Topological boundary modes in nonlinear dynamics with chiral symmetry

被引:2
作者
Zhou, Di [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Key Lab Adv Optoelect Quantum Architecture & Measu, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Phys, Beijing 100081, Peoples R China
[3] Univ Illinois, Dept Phys, Champaign, IL 61801 USA
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 07期
基金
中国国家自然科学基金;
关键词
topological physics; nonlinear dynamics; non-spatial symmetry; EDGE STATES; VOLTERRA; SOLITONS; SURFACE;
D O I
10.1088/1367-2630/ad5b14
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Particle-hole symmetry and chiral symmetry play a pivotal role in multiple areas of physics, yet they remain unstudied in systems with nonlinear interactions whose nonlinear normal modes do not exhibit U(1) -gauge symmetry. In this work, we establish particle-hole symmetry and chiral symmetry in such systems. Chiral symmetry ensures the quantization of the Berry phase of nonlinear normal modes and categorizes the topological phases of nonlinear dynamics. We show topologically protected static boundary modes in chiral-symmetric nonlinear systems. Furthermore, we demonstrate amplitude-induced nonlinear topological phase transition in chiral-symmetric nonlinear dynamics. Our theoretical framework extends particle-hole and chiral symmetries to nonlinear dynamics, whose nonlinear modes do not necessarily yield U(1) -gauge symmetry.
引用
收藏
页数:23
相关论文
共 112 条
  • [1] Exact solitonic solutions for optical media with χ(2) nonlinearity and PT-symmetric potentials
    Abdullaev, F. Kh.
    Umarov, B. A.
    [J]. INTERNATIONAL CONFERENCE ON QUANTUM OPTICS AND QUANTUM INFORMATION (ICQOQI) 2013, 2014, 553
  • [2] Whitham modulation theory for the defocusing nonlinear Schrodinger equation in two and three spatial dimensions
    Abeya, Asela
    Biondini, Gino
    Hoefer, Mark A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (02)
  • [3] Nonlinear optical waveguide lattices: Asymptotic analysis, solitons, and topological insulators
    Ablowitz, Mark J.
    Cole, Justin T.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 440
  • [4] Fractional Integrable Nonlinear Soliton Equations
    Ablowitz, Mark J.
    Been, Joel B.
    Carr, Lincoln D.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (18)
  • [5] Integrable Nonlocal Nonlinear Schrodinger Equation
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [6] Universal constraint on nonlinear population dynamics
    Adachi, Kyosuke
    Iritani, Ryosuke
    Hamazaki, Ryusuke
    [J]. COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [7] Quantum fluids of light in all-optical scatterer lattices
    Alyatkin, S.
    Sigurdsson, H.
    Askitopoulos, A.
    Topfer, J. D.
    Lagoudakis, P. G.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [8] [Anonymous], 2018, Parity-time Symmetry and Its Applications, DOI DOI 10.1007/978-981-13-1247-2
  • [9] Bekenstein R, 2015, NAT PHYS, V11, P872, DOI [10.1038/NPHYS3451, 10.1038/nphys3451]
  • [10] Implementation of PT symmetric devices using plasmonics: principle and applications
    Benisty, Henri
    Degiron, Aloyse
    Lupu, Anatole
    De Lustrac, Andre
    Chenais, Sebastien
    Forget, Sebastien
    Besbes, Mondher
    Barbillon, Gregory
    Bruyant, Aurelien
    Blaize, Sylvain
    Lerondel, Gilles
    [J]. OPTICS EXPRESS, 2011, 19 (19): : 18004 - 18019