Enumeration of the Motzkin paths above a line of rational slope

被引:0
作者
Yang, Lin [1 ]
Zhang, Yu -Yuan [1 ]
Yang, Sheng-Liang [1 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Riordan array; Generating function; Motzkin path; Motzkin numbers; gamma-Positivity; IDENTITIES; HALVES;
D O I
10.1016/j.disc.2024.114013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce L m -Motzkin paths similar to m -Dyck paths. For fixed positive integer m , L m - Motzkin paths are a generalization of Motzkin paths that start at ( 0 , 0 ) , use steps U = ( 1 , 1 ) , D = ( 1 , - 1 ) and L = ( 1 , 0 ) , remain weakly above the line y = m - 1 m x , and end on this line. The number M ( m ) n of L m -Motzkin paths running from ( 0 , 0 ) to ( mn , ( m - 1 ) n ) is called the n -th L m -Motzkin number. We first prove that the generating function M m ( t ) of the L m - Motzkin numbers satisfies the equation M m ( t ) = 1 + tM m ( t ) m + t 2 M m ( t ) 2 m . We then use this generating function and Riordan array to discuss the enumerations of the partial L m - Motzkin paths and the partial grand L m -Motzkin paths. Finally, we consider the colored L m - Motzkin paths, and present two classes of gamma -positive polynomials via enumerating these paths. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 32 条
[1]   Motzkin numbers [J].
Aigner, M .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (06) :663-675
[2]  
[Anonymous], 1999, Cambridge Studies in Advanced Mathematics
[3]  
Athanasiadis C.A., 2018, Semin. Lothar. Comb., V77
[4]   On the halves of a Riordan array and their antecedents [J].
Barry, Paul .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 582 :114-137
[5]   Identities from weighted Motzkin paths [J].
Chen, William Y. C. ;
Yan, Sherry H. F. ;
Yang, Laura L. M. .
ADVANCES IN APPLIED MATHEMATICS, 2008, 41 (03) :329-334
[6]   Matrix identities on weighted partial Motzkin paths [J].
Chen, William Y. C. ;
Li, Nelson Y. ;
Shapiro, Louis W. ;
Yan, Sherry H. F. .
EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (04) :1196-1207
[7]  
Chen WYC, 2011, ELECTRON J COMB, V18
[8]   The (s, s plus d, ..., s plus pd)-core partitions and the rational Motzkin paths [J].
Cho, Hyunsoo ;
Huh, JiSun ;
Sohn, Jaebum .
ADVANCES IN APPLIED MATHEMATICS, 2020, 121
[9]   Catalan intervals and uniquely sorted permutations [J].
Defant, Colin .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 174
[10]   Dyck path enumeration [J].
Deutsch, E .
DISCRETE MATHEMATICS, 1999, 204 (1-3) :167-202