Effects of Topological Factors and Class Imbalance on Node Classification Through Graph Convolutional Neural Networks

被引:0
作者
Parlanti, Tatiana S. [1 ,2 ]
Catania, Carlos A. [1 ,2 ]
Moyano, Luis G. [2 ,3 ,4 ]
机构
[1] Univ Nacl Cuyo, Fac Ingn, Lab Sistemas Inteligentes LABSIN, Mendoza, Argentina
[2] Consejo Nacl Invest Cient & Tecn, C1425FQB CABA, Buenos Aires, DF, Argentina
[3] Ctr Atom Bariloche, CNEA, Grp Fis Estadist & Interdisciplinaria, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[4] Univ Nacl Cuyo, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
来源
COMPUTER SCIENCE-CACIC 2023 | 2024年 / 2123卷
关键词
Graph Convolutions Neural Networks; Stochastic Block Models; Complex Networks;
D O I
10.1007/978-3-031-62245-8_15
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Graph Convolutional Neural Networks (GCNs) have proven to be highly effective in solving graph-related problems, as they not only consider the individual node features but also capture the topological characteristics of the graph. However, the lack of public datasets presents a challenge in the evaluation and comparison of these networks across various contexts. This article addresses the inherent limitations of GCNs, focusing specifically on the impact of topological aspects and class imbalance in node classification tasks. Using a variant of the Stochastic Block Model (SBM) algorithm that allows for node covariates, a statistically significant number of synthetic graphs is generated, varying feature characteristics as well as group edge probabilities. Thus, a comprehensive exploration of GCNs' capabilities in different scenarios is conducted. The initial findings underscore the fundamental importance of node feature variability for classification and highlight the challenges that arise when presented with strong class imbalance scenarios.
引用
收藏
页码:213 / 226
页数:14
相关论文
共 8 条
[1]  
Carson B.S., 2023, Theses and Dissertations
[2]  
Deshpande Y, 2018, ADV NEUR IN, V31
[3]   Graph Neural Networks in TensorFlow and Keras with Spektral [J].
Grattarola, Daniele ;
Alippi, Cesare .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2021, 16 (01) :99-106
[4]  
Hamilton W.L., 2020, SYNTHESIS LECT ARTIF, V14, P1, DOI DOI 10.2200/S01045ED1V01Y202009AIM046
[5]   A review of stochastic block models and extensions for graph clustering [J].
Lee, Clement ;
Wilkinson, Darren J. .
APPLIED NETWORK SCIENCE, 2019, 4 (01)
[6]  
Kipf TN, 2017, Arxiv, DOI [arXiv:1609.02907, 10.48550/arXiv.1609.02907]
[7]  
Parlanti T.S, 2024, LIBR ACT 29 C ARG CI, P124
[8]   Stochastic block models with multiple continuous attributes [J].
Stanley, Natalie ;
Bonacci, Thomas ;
Kwitt, Roland ;
Niethammer, Marc ;
Mucha, Peter J. .
APPLIED NETWORK SCIENCE, 2019, 4 (01)