Application of Machine Learning for Classification of Brain Tumors: A Systematic Review and Meta-Analysis

被引:5
作者
Santana, Lais Silva [1 ]
Diniz, Jordana Borges Camargo [2 ]
Gasparri, Luisa Mothe Glioche [3 ]
Canto, Alessandra Buccaran [4 ]
dos Reis, Savio Batista [5 ]
Ribeiro, Iuri Santana Neville [6 ]
Figueiredo, Eberval Gadelha [6 ]
Telles, Joaeo Paulo Mota [6 ]
机构
[1] Univ Sao Paulo, Sch Med, Sao Paulo, Brazil
[2] Neurol Inst Goiania, Dept Neurol, Goiania, Brazil
[3] Univ Estacio Sa, Sch Med, Rio De Janeiro, Brazil
[4] Max Planck Univ Ctr, Sch Med, Heidelberg, Germany
[5] Univ Fed Rio de Janeiro, Sch Med, Rio De Janeiro, Brazil
[6] Hosp Clin Fac Med Univ Sao Paulo, Dept Neurol, Sao Paulo, Brazil
关键词
Brain tumors; Classification; Machine learning; CENTRAL-NERVOUS-SYSTEM; FEATURE-EXTRACTION; MRI; DIFFERENTIATION; DIAGNOSIS; FEATURES; SEGMENTATION; DIFFUSION; TEXTURE;
D O I
10.1016/j.wneu.2024.03.152
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
- BACKGROUND: Classifying brain tumors accurately is crucial for treatment and prognosis. Machine learning (ML) shows great promise in improving tumor classification accuracy. This study evaluates ML algorithms for differentiating various brain tumor types. - METHODS: A systematic review and meta-analysis were conducted, searching PubMed, Embase, and Web of Science up to March 14, 2023. Studies that only investigated image segmentation accuracy or brain tumor detection instead of classification were excluded. We extracted binary diagnostic accuracy data, constructing contingency tables to derive sensitivity and specificity. - RESULTS: Fifty-one studies were included. The pooled area under the curve for glioblastoma versus lymphoma and low-grade versus high-grade gliomas were 0.99 (95% confidence interval [CI]: 0.98-1.00) and 0.89, respectively. The pooled sensitivity and specificity for benign versus malignant tumors were 0.90 (95% CI: 0.85-0.93) and 0.93 (95% CI: 0.90-0.95), respectively. The pooled sensitivity and specificity for low-grade versus high-grade gliomas were 0.99 (95% CI: 0.97-1.00) and 0.94, (95% CI: 0.79-0.99), respectively. Primary versus metastatic tumor identification yields sensitivity and specificity of 0.89, (95% CI: 0.83-0.93) and 0.87 (95% CI: 0.82-0.91), correspondingly. The differentiation of gliomas from pituitary tumors yielded the highest results among primary brain tumor classifications: sensitivity of 0.99 (95% CI: 0.99-1.00) and specificity of 0.99 (95% CI: 0.98-1.00). - CONCLUSIONS: ML demonstrated excellent performance in classifying brain tumor images, with near-maximum area under the curves, sensitivity, and specificity.
引用
收藏
页码:204 / 218.e2
页数:17
相关论文
共 82 条
[51]   Tumor Diagnosis against Other Brain Diseases Using T2 MRI Brain Images and CNN Binary Classifier and DWT [J].
Papadomanolakis, Theodoros N. ;
Sergaki, Eleftheria S. ;
Polydorou, Andreas A. ;
Krasoudakis, Antonios G. ;
Makris-Tsalikis, Georgios N. ;
Polydorou, Alexios A. ;
Afentakis, Nikolaos M. ;
Athanasiou, Sofia A. ;
Vardiambasis, Ioannis O. ;
Zervakis, Michail E. .
BRAIN SCIENCES, 2023, 13 (02)
[52]   Brain tumor magnetic resonance images classification based machine learning paradigms [J].
Pattanaik, Baby Barnali ;
Anitha, Komma ;
Rathore, Shanti ;
Biswas, Preesat ;
Sethy, Prabira Kumar ;
Behera, Santi Kumari .
WSPOLCZESNA ONKOLOGIA-CONTEMPORARY ONCOLOGY, 2022, 26 (04) :268-274
[53]   Machine Learning Decision Tree Models for Differentiation of Posterior Fossa Tumors Using Diffusion Histogram Analysis and Structural MRI Findings [J].
Payabvash, Seyedmehdi ;
Aboian, Mariam ;
Tihan, Tarik ;
Cha, Soonmee .
FRONTIERS IN ONCOLOGY, 2020, 10
[54]  
Perkins A, 2016, AM FAM PHYSICIAN, V93, P211
[55]   Radiomic Based Machine Learning Performance for a Three Class Problem in Neuro-Oncology: Time to Test the Waters? [J].
Priya, Sarv ;
Liu, Yanan ;
Ward, Caitlin ;
Le, Nam H. ;
Soni, Neetu ;
Pillenahalli Maheshwarappa, Ravishankar ;
Monga, Varun ;
Zhang, Honghai ;
Sonka, Milan ;
Bathla, Girish .
CANCERS, 2021, 13 (11)
[56]   A quantitative SVM approach potentially improves the accuracy of magnetic resonance spectroscopy in the preoperative evaluation of the grades of diffuse gliomas [J].
Qi, Chong ;
Li, Yiming ;
Fan, Xing ;
Jiang, Yin ;
Wang, Rui ;
Yang, Song ;
Meng, Lanxi ;
Jiang, Tao ;
Li, Shaowu .
NEUROIMAGE-CLINICAL, 2019, 23
[57]   Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers [J].
Qian, Zenghui ;
Li, Yiming ;
Wang, Yongzhi ;
Li, Lianwang ;
Li, Runting ;
Wang, Kai ;
Li, Shaowu ;
Tang, Ke ;
Zhang, Chuanbao ;
Fan, Xing ;
Chen, Baoshi ;
Li, Wenbin .
CANCER LETTERS, 2019, 451 :128-135
[58]   Effect of Dataset Size and Train/Test Split Ratios in QSAR/QSPR Multiclass Classification [J].
Racz, Anita ;
Bajusz, David ;
Heberger, Karoly .
MOLECULES, 2021, 26 (04)
[59]   Feasibility on the Use of Radiomics Features of 11[C]-MET PET/CT in Central Nervous System Tumours: Preliminary Results on Potential Grading Discrimination Using a Machine Learning Model [J].
Russo, Giorgio ;
Stefano, Alessandro ;
Alongi, Pierpaolo ;
Comelli, Albert ;
Catalfamo, Barbara ;
Mantarro, Cristina ;
Longo, Costanza ;
Altieri, Roberto ;
Certo, Francesco ;
Cosentino, Sebastiano ;
Sabini, Maria Gabriella ;
Richiusa, Selene ;
Barbagallo, Giuseppe Maria Vincenzo ;
Ippolito, Massimo .
CURRENT ONCOLOGY, 2021, 28 (06) :5318-5331
[60]   A package-SFERCB-"Segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors" [J].
Sachdeva, Jainy ;
Kumar, Vinod ;
Gupta, Indra ;
Khandelwal, Niranjan ;
Ahuja, Chirag Kamal .
APPLIED SOFT COMPUTING, 2016, 47 :151-167