Overview of Human Activity Recognition Using Sensor Data

被引:0
|
作者
Hamad, Rebeen Ali [1 ]
Woo, Wai Lok [1 ]
Wei, Bo [2 ]
Yang, Longzhi [1 ]
机构
[1] Northumbria Univ, Newcastle Upon Tyne NE1 8ST, England
[2] Univ Lancaster, Lancaster LA1 4WA, England
来源
ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2022 | 2024年 / 1454卷
关键词
Activity recognition; deep learning; sensor data; REAL-TIME; MOVEMENT;
D O I
10.1007/978-3-031-55568-8_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human activity recognition (HAR) is an essential research field that has been used in different applications including home and workplace automation, security and surveillance as well as healthcare. Starting from conventional machine learning methods to the recently developing deep learning techniques and the internet of things, significant contributions have been shown in the HAR area in the last decade. Even though several review and survey studies have been published, there is a lack of sensor-based HAR overview studies focusing on summarising the usage of wearable sensors and smart home sensors data as well as applications of HAR and deep learning techniques. Hence, we overview sensor-based HAR, discuss several important applications that rely on HAR, and highlight the most common machine learning methods that have been used for HAR. Finally, several challenges of HAR are explored that should be addressed to further improve the robustness of HAR.
引用
收藏
页码:380 / 391
页数:12
相关论文
共 50 条
  • [41] Activity Recognition Using Hierarchical Hidden Markov Models on Streaming Sensor Data
    Asghari, Parviz
    Nazerfard, Ehsan
    2018 9TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2018, : 416 - 420
  • [42] Body Sensor Networks for Human Activity Recognition
    Chetty, Girija
    White, Matthew
    2016 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2016, : 666 - 671
  • [43] A New Framework for Smartphone Sensor-Based Human Activity Recognition Using Graph Neural Network
    Mondal, Riktim
    Mukherjee, Debadyuti
    Singh, Pawan Kumar
    Bhateja, Vikrant
    Sarkar, Ram
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 11461 - 11468
  • [44] HierHAR: Sensor-Based Data-Driven Hierarchical Human Activity Recognition
    Wang, Aiguo
    Zhao, Shenghui
    Zheng, Chundi
    Chen, Huihui
    Liu, Li
    Chen, Guilin
    IEEE SENSORS JOURNAL, 2021, 21 (03) : 3353 - 3365
  • [45] A Data Efficient Vision Transformer for Robust Human Activity Recognition from the Spectrograms of Wearable Sensor Data
    McQuire, Jamie
    Watson, Paul
    Wright, Nick
    Hiden, Hugo
    Catt, Michael
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 364 - 368
  • [46] Outlier Detection in Wearable Sensor Data for Human Activity Recognition (HAR) Based on DRNNs
    Munoz-Organero, Mario
    IEEE ACCESS, 2019, 7 : 74422 - 74436
  • [47] Sensor-Based Human Activity Recognition Using Adaptive Class Hierarchy
    Kondo, Kazuma
    Hasegawa, Tatsuhito
    SENSORS, 2021, 21 (22)
  • [48] FMCW Radar Sensor Based Human Activity Recognition using Deep Learning
    Ahmed, Shahzad
    Park, Junbyung
    Cho, Sung Ho
    2022 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2022,
  • [49] Instance Based Human Physical Activity(HPA) Recognition Using Shimmer2 Wearable Sensor Data sets
    Doreswamy
    Yogesh, K. M.
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 995 - 999
  • [50] A Novel Deep Multifeature Extraction Framework Based on Attention Mechanism Using Wearable Sensor Data for Human Activity Recognition
    Wang, Yang
    Xu, Hongji
    Liu, Yunxia
    Wang, Mengmeng
    Wang, Yuhao
    Yang, Yang
    Zhou, Shuang
    Zeng, Jiaqi
    Xu, Jie
    Li, Shijie
    Li, Jianjun
    IEEE SENSORS JOURNAL, 2023, 23 (07) : 7188 - 7198