Asynchronous motor functional state monitoring based on the relative deviations of the power losses

被引:0
作者
Hussienat, Lina H. [1 ]
Aldaikh, Suad Omar [1 ]
Qawaqzeh, Mohamed [1 ]
Vovk, Oleksandr [2 ]
Halko, Serhii [2 ]
Kvitka, Serhii [2 ]
Sabo, Andrii [2 ]
Ostroverkhov, Mykola [3 ]
Miroshnyk, Oleksandr [4 ]
Shchur, Taras [5 ]
Kielbasa, Pawel
机构
[1] Al Balqa Appl Univ, Salt, Jordan
[2] Dmytro Motornyi Tavria State Agrotechnol Univ, Melitopol, Ukraine
[3] Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Kiev, Ukraine
[4] State Biotechnol Univ, Kiev, Ukraine
[5] Cyclone Mfg Inc, Mississauga, ON, Canada
来源
PRZEGLAD ELEKTROTECHNICZNY | 2024年 / 100卷 / 07期
关键词
asynchronous motor; functional state; diagnostic parameter; power loss; DIAGNOSIS;
D O I
10.15199/48.2024.07.06
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The article proposes a method for monitoring the functional state of asynchronous motors. Relative deviations of power losses in the electric motor are used as diagnostic parameters determined under the same conditions at operating intervals. Experimental testing showed its high ability to detect faults. The advantage of this research is obtaining a diagnostic method that allows to establish not only that the asynchronous motor is faulty, but also to determine in which node the malfunction occurred.
引用
收藏
页码:26 / 29
页数:4
相关论文
共 26 条
[1]   Energy-Saving Load Control of Induction Electric Motors for Drives of Working Machines to Reduce Thermal Wear [J].
Al-Quraan, Tareq M. A. ;
Vovk, Oleksandr ;
Halko, Serhii ;
Kvitka, Serhii ;
Suprun, Olena ;
Miroshnyk, Oleksandr ;
Nitsenko, Vitalii ;
Zayed, Nurul Mohammad ;
Islam, K. M. Anwarul .
INVENTIONS, 2022, 7 (04)
[2]  
AlIssa H. A., 2022, International Journal of Electrical and Computer Engineering, V13, P2323, DOI [10.11591/ijece.v12i3.pp2323-2334, DOI 10.11591/IJECE.V12I3.PP2323-2334]
[3]   The Cluster Computation-Based Hybrid FEM-Analytical Model of Induction Motor for Fault Diagnostics [J].
Asad, Bilal ;
Vaimann, Toomas ;
Belahcen, Anouar ;
Kallaste, Ants ;
Rassolkin, Anton ;
Iqbal, M. Naveed .
APPLIED SCIENCES-BASEL, 2020, 10 (21) :1-15
[4]   Improving Energy Efficiency of Grain Cleaning Technology [J].
Bazaluk, Oleg ;
Postnikova, Marina ;
Halko, Serhii ;
Mikhailov, Evgeniy ;
Kovalov, Oleksandr ;
Suprun, Olena ;
Miroshnyk, Oleksandr ;
Nitsenko, Vitalii .
APPLIED SCIENCES-BASEL, 2022, 12 (10)
[5]   Energy Saving in Electromechanical Grain Cleaning Systems [J].
Bazaluk, Oleg ;
Postnikova, Marina ;
Halko, Serhii ;
Kvitka, Serhii ;
Mikhailov, Evgeniy ;
Kovalov, Oleksandr ;
Suprun, Olena ;
Miroshnyk, Oleksandr ;
Nitsenko, Vitalii .
APPLIED SCIENCES-BASEL, 2022, 12 (03)
[6]   Fault Detection of Induction Motors with Combined Modeling- and Machine-Learning-Based Framework [J].
Benninger, Moritz ;
Liebschner, Marcus ;
Kreischer, Christian .
ENERGIES, 2023, 16 (08)
[7]   Reliable stator fault detection based on the induction motor negative sequence current compensation [J].
Bouzid, M. Ben Khader ;
Champenois, G. ;
Tnani, S. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2018, 95 :490-498
[8]   Reliability and Operation of High-Efficiency Induction Motors [J].
Ferreira, Fernando J. T. E. ;
Ge Baoming ;
de Almeida, Anibal T. .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2016, 52 (06) :4628-4637
[9]   Acoustic based fault diagnosis of three-phase induction motor [J].
Glowacz, Adam .
APPLIED ACOUSTICS, 2018, 137 :82-89
[10]   Diagnosis of the three-phase induction motor using thermal imaging [J].
Glowacz, Adam ;
Glowacz, Zygfryd .
INFRARED PHYSICS & TECHNOLOGY, 2017, 81 :7-16