Projected Stein Variational Gradient Descent

被引:0
作者
Chen, Peng [1 ]
Ghattas, Omar [1 ]
机构
[1] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020 | 2020年 / 33卷
基金
美国国家科学基金会;
关键词
STOCHASTIC NEWTON MCMC; INVERSE PROBLEMS; MONTE-CARLO; ALGORITHMS; REDUCTION; INFERENCE; FLOW;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The curse of dimensionality is a longstanding challenge in Bayesian inference in high dimensions. In this work, we propose a projected Stein variational gradient descent (pSVGD) method to overcome this challenge by exploiting the fundamental property of intrinsic low dimensionality of the data informed subspace stemming from ill-posedness of such problems. We adaptively construct the subspace using a gradient information matrix of the log-likelihood, and apply pSVGD to the much lower-dimensional coefficients of the parameter projection. The method is demonstrated to be more accurate and efficient than SVGD. It is also shown to be more scalable with respect to the number of parameters, samples, data points, and processor cores via experiments with parameters dimensions ranging from the hundreds to the tens of thousands.
引用
收藏
页数:12
相关论文
共 38 条
[1]  
[Anonymous], SIAM J SCI COMPUTING
[2]   Hessian-based model reduction for large-scale systems with initial-condition inputs [J].
Bashir, O. ;
Willcox, K. ;
Ghattas, O. ;
Waanders, B. van Bloemen ;
Hill, J. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 73 (06) :844-868
[3]   Geometric MCMC for infinite-dimensional inverse problems [J].
Beskos, Alexandros ;
Girolami, Mark ;
Lan, Shiwei ;
Farrell, Patrick E. ;
Stuart, Andrew M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 335 :327-351
[4]  
Bigoni Daniele, 2019, ARXIV190600031
[5]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[6]  
Chen P., 2019, Advances in Neural Information Processing Systems, P15104
[7]   Taylor approximation and variance reduction for PDE-constrained optimal control under uncertainty [J].
Chen, Peng ;
Villa, Umberto ;
Ghattas, Omar .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 385 :163-186
[8]   Hessian-based adaptive sparse quadrature for infinite-dimensional Bayesian inverse problems [J].
Chen, Peng ;
Villa, Umberto ;
Ghattas, Omar .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 :147-172
[9]   Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations [J].
Chen, Peng ;
Schwa, Christoph .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 316 :470-503
[10]   Sparse-grid, reduced-basis Bayesian inversion [J].
Chen, Peng ;
Schwab, Christoph .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 297 :84-115