X-ray phase and dark-field computed tomography without optical elements

被引:3
作者
Eatham, T. homas a. l [1 ]
Aganin, D. avid m. p [1 ]
Organ, K. aye s. m [1 ]
机构
[1] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
CONTRAST; RETRIEVAL; IMAGE; OBJECTS;
D O I
10.1364/OE.509604
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
X-ray diffusive dark -field imaging, which allows spatially unresolved microstructure to be mapped across a sample, is an increasingly popular tool in an array of settings. Here, we present a new algorithm for phase and dark -field computed tomography based on the x-ray Fokker -Planck equation. Needing only a coherent x-ray source, sample, and detector, our propagation -based algorithm can map the sample density and dark-field/diffusion properties of the sample in 3D. Importantly, incorporating dark -field information in the density reconstruction process enables a higher spatial resolution reconstruction than possible with previous propagationbased approaches. Two sample exposures at each projection angle are sufficient for the successful reconstruction of both the sample density and dark -field Fokker -Planck diffusion coefficients. We anticipate that the proposed algorithm may be of benefit in biomedical imaging and industrial settings. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:4588 / 4602
页数:15
相关论文
共 65 条
[1]  
Ahlers JN, 2024, Arxiv, DOI arXiv:2309.15874
[2]   Dark-field tomography of an attenuating object using intrinsic x-ray speckle tracking [J].
Alloo, Samantha J. ;
Paganin, David M. ;
Morgan, Kaye S. ;
Kitchen, Marcus J. ;
Stevenson, Andrew W. ;
Mayo, Sheridan C. ;
Li, Heyang T. ;
Kennedy, Ben M. ;
Maksimenko, Anton ;
Bowden, Joshua C. ;
Pavlov, Konstantin M. .
JOURNAL OF MEDICAL IMAGING, 2022, 9 (03)
[3]   Imaging Breast Microcalcifications Using Dark-Field Signal in Propagation-Based Phase-Contrast Tomography [J].
Aminzadeh, A. ;
Arhatari, B. D. ;
Maksimenko, A. ;
Hall, C. J. ;
Hausermann, D. ;
Peele, A. G. ;
Fox, J. ;
Kumar, B. ;
Prodanovic, Z. ;
Dimmock, M. ;
Lockie, D. ;
Pavlov, K. M. ;
Nesterets, Y., I ;
Thompson, D. ;
Mayo, S. C. ;
Paganin, D. M. ;
Taba, S. T. ;
Lewis, S. ;
Brennan, P. C. ;
Quiney, H. M. ;
Gureyev, T. E. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (11) :2980-2990
[4]   Quantitative x-ray dark-field computed tomography [J].
Bech, M. ;
Bunk, O. ;
Donath, T. ;
Feidenhans'l, R. ;
David, C. ;
Pfeiffer, F. .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (18) :5529-5539
[5]   2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance [J].
Beltran, M. A. ;
Paganin, D. M. ;
Uesugi, K. ;
Kitchen, M. J. .
OPTICS EXPRESS, 2010, 18 (07) :6423-6436
[6]   Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation [J].
Beltran, Mario A. ;
Paganin, David M. ;
Pelliccia, Daniele .
JOURNAL OF OPTICS, 2018, 20 (05)
[7]   X-ray multimodal imaging using a random-phase object [J].
Berujon, Sebastien ;
Wang, Hongchang ;
Sawhney, Kawal .
PHYSICAL REVIEW A, 2012, 86 (06)
[8]   X-ray dark-field computed tomography using a grating interferometer setup [J].
Bevins, Nicholas ;
Zambelli, Joseph ;
Qi, Zhihua ;
Chen, Guang-Hong .
MEDICAL IMAGING 2010: PHYSICS OF MEDICAL IMAGING, 2010, 7622
[9]   Tunable X-ray dark-field imaging for sub-resolution feature size quantification in porous media [J].
Blykers, Benjamin K. ;
Organista, Caori ;
Boone, Matthieu N. ;
Kagias, Matias ;
Marone, Federica ;
Stampanoni, Marco ;
Bultreys, Tom ;
Cnudde, Veerle ;
Aelterman, Jan .
SCIENTIFIC REPORTS, 2021, 11 (01)
[10]   Computed tomography implementation of multiple-image radiography [J].
Brankov, JG ;
Wernick, MN ;
Yang, YY ;
Li, J ;
Muehleman, C ;
Zhong, Z ;
Anastasio, MA .
MEDICAL PHYSICS, 2006, 33 (02) :278-289