A Novel Method for the Determination of Electromigration-Induced Void Nucleation Stresses

被引:0
作者
Shuster-Passage, J. [1 ]
Razek, S. Abdel [1 ]
Mattoo, M. [1 ]
Hauschildt, M. [1 ]
Choi, S. [1 ]
Gall, M. [1 ]
Kteyan, A. [2 ]
Choy, J. -H. [3 ]
Sukharev, V. [3 ]
Kraatz, M. [4 ]
Lloyd, J. R. [5 ]
机构
[1] GlobalFoundries, 400 Stonebreak Rd Extens, Malta, NY 12020 USA
[2] Siemens EDA, 16 Halabyan St, Yerevan 0036, Armenia
[3] Siemens EDA, 46897 Bayside Pkwy 200, Fremont, CA 94538 USA
[4] Fraunhofer IKTS, Maria Reiche Str 2, D-01109 Dresden, Germany
[5] SUNY Poly, 257 Fuller Rd, Albany, NY 12203 USA
来源
2024 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, IRPS 2024 | 2024年
关键词
electromigration; Cu interconnect; nucleation; void growth; critical stress; Wheatstone Bridge; early failure; statistics; EVOLUTION;
D O I
10.1109/IRPS48228.2024.10529368
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The experimental determination of electromigration-induced critical stresses leading to void nucleation has been a complex endeavor across the past several decades. In this study, we propose a combination of single link electromigration testing, augmented by large scale statistical evaluations using Wheatstone Bridges, as well as detailed physics-based simulations to arrive at the extraction of the critical stresses which lead to void nucleation and further growth. The calibration efforts lead to well-matched values in terms of basic physical parameters such as effective diffusivity D-eff, charge number Z* and effective modulus B. Furthermore, the statistical distribution of single link Kelvin structure and Wheatstone Bridge failure times is reproduced very well, ruling out an early nucleation mechanism close to the 4-sigma level. The calibration of the complex simulation model, based on a large experimental database, opens up the path to a much-improved chip-level reliability assessment process.
引用
收藏
页数:6
相关论文
共 13 条
[1]   ELECTROMIGRATION IN THIN ALUMINUM FILMS ON TITANIUM NITRIDE [J].
BLECH, IA .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (04) :1203-1208
[2]   Power Grid Electromigration Checking Using Physics-Based Models [J].
Chatterjee, Sandeep ;
Sukharev, Valeriy ;
Najm, Farid N. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (07) :1317-1330
[3]  
Christiansen C, 2012, 2012 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS)
[4]  
Hau-Riege S., 2000, J. Mater. Res., V15
[5]   STRESS EVOLUTION DUE TO ELECTROMIGRATION IN CONFINED METAL LINES [J].
KORHONEN, MA ;
BORGESEN, P ;
TU, KN ;
LI, CY .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (08) :3790-3799
[6]  
Kraatz M., 2018, P IEEE IRPS, V4F, P2
[7]  
Lee KD, 2012, 2012 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS)
[8]   Online Demagnetization Monitoring of Dual Y Shift 30 Degree Six-phase Permanent Magnet Synchronous Motor [J].
Li, Ziang ;
Zhang, Jian ;
Fang, Youtong ;
Huang, Xiaoyan .
PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
[9]   Copper metallization for high performance silicon technology [J].
Rosenberg, R ;
Edelstein, DC ;
Hu, CK ;
Rodbell, KP .
ANNUAL REVIEW OF MATERIALS SCIENCE, 2000, 30 :229-262
[10]   Postvoiding Stress Evolution in Confined Metal Lines [J].
Sukharev, Valeriy ;
Kteyan, Armen ;
Huang, Xin .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2016, 16 (01) :50-60