Non-destructive method for assessing fruit quality using modified depthwise separable convolutions on Hyperspectral images

被引:0
作者
Tyagi, Divyani [1 ]
Duraisamy, Prakash [2 ]
Sandhan, Tushar [1 ]
机构
[1] Indian Inst Technol Kanpur, Kanpur, Uttar Pradesh, India
[2] Univ Wisconsin Green Bay, Green Bay, WI USA
来源
SENSING FOR AGRICULTURE AND FOOD QUALITY AND SAFETY XVI | 2024年 / 13060卷
关键词
Convolutional neural network; Depthwise Separable Convolution; Hyperspectral Images; VIS; Sugar Content Analysis;
D O I
10.1117/12.3015521
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Hyperspectral imaging records data over a broad range of electromagnetic spectrum wavelengths and presents a viable option for fruit maturity detection when incorporated with deep neural networks. This paper focuses on improving the accuracy of the Kiwi and Avocado fruit hyperspectral dataset by introducing a modified version of depthwise separable convolution and comparing the results with state-of-the-art models to prove our model's reliability. The research aims to use the proposed model to predict the fruits' ripeness, firmness, and sugar content levels.
引用
收藏
页数:7
相关论文
共 20 条
[1]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[2]   Hyperspectral Imaging in the Medical Field: Present and Future [J].
Calin, Mihaela Antonina ;
Parasca, Sorin Viorel ;
Savastru, Dan ;
Manea, Dragos .
APPLIED SPECTROSCOPY REVIEWS, 2014, 49 (06) :435-447
[3]   Nondestructive detection of chilling injury in cucumber fruit using hyperspectral imaging with feature selection and supervised classification [J].
Cen, Haiyan ;
Lu, Renfu ;
Zhu, Qibing ;
Mendoza, Fernando .
POSTHARVEST BIOLOGY AND TECHNOLOGY, 2016, 111 :352-361
[4]   Sugariness prediction of Syzygium samarangense using convolutional learning of hyperspectral images [J].
Chen, Chih-Jung ;
Yan, Yung-Jhe ;
Huang, Chi-Cho ;
Chien, Jen-Tzung ;
Chu, Chang-Ting ;
Jang, Je-Wei ;
Chen, Tzung-Cheng ;
Lin, Shiou-Gwo ;
Shih, Ruei-Siang ;
Mang Ou-Yang .
SCIENTIFIC REPORTS, 2022, 12 (01)
[5]  
Deshpande M., 2024, Int J Intell Syst Appl Eng, V12, P324
[6]   Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles [J].
Fauvel, Mathieu ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Sveinsson, Johannes R. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (11) :3804-3814
[7]  
Gombru github, 2022, Understanding Categorical Cross-Entropy Loss, Binary Cross-Entropy Loss, Softmax Loss, Logistic Loss, Focal Loss and all those confusing names
[8]  
Guo J., 2018, arXiv. BMVA Press, V8
[9]  
Gustavsson J., 2011, Global food losses and food waste: extent, causes and prevention
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778