A hierarchical attention network integrating multi-scale relationship for drug response prediction

被引:3
作者
Wang, Xiaoqi [1 ]
Wen, Yuqi [2 ]
Zhang, Yixin [2 ]
Dai, Chong [2 ,3 ]
Yang, Yaning [1 ]
Bo, Xiaochen [2 ]
He, Song [2 ]
Peng, Shaoliang [1 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[2] Inst Hlth Serv & Transfus Med, Dept Biotechnol, Beijing 100850, Peoples R China
[3] Beijing Univ Chem Technol, Coll Life Sci & Technol, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Drug response prediction; Deep learning; Hierarchical attention network; Multi-scale relationship; LUNG-CANCER; DISCOVERY; IDENTIFICATION; PRALATREXATE; SENSITIVITY; COMBINATION; RESISTANCE; INHIBITORS; ENZYMES; SYSTEM;
D O I
10.1016/j.inffus.2024.102485
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anticancer drug response prediction with deep learning technology has become the foundation of precision medicine. It is essential for anticancer drug response prediction to incorporate multi -scale relationships within feature items and biomedical entities. Therefore, we propose MultiDRP that develops the hierarchical attention networks integrating multi -scale relationship for drug response prediction. MultiDRP can fuse both internal correlation of feature items and external relationship of biomedical entities by hierarchically integrating graph attention and self -attention networks to improve the anticancer drug response prediction. A variety of results showed that MultiDRP generated the great representation by integrating multi -scale relationships, and achieved higher performance compared to existing methods on various prediction scenarios. The results of network proximity, gene ontology biological process (GOBP) enrichment, and drug pathway association analysis show that MultiDRP can accurately screen the sensitive and resistant drugs for cancer cell lines. In vitro experiments, eight novel drugs predicted by MultiDRP exhibited high sensitivity to lung cancer cell line NCI -H23, seven of which showed IC 50 values of less than 10 nM. These results further suggest that MultiDRP can serve as a powerful tool for anticancer drug response prediction. The source data and code are available at https://github.com/pengsl-lab/MultiDRP.git.
引用
收藏
页数:17
相关论文
共 102 条
[1]   Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression [J].
Ammad-ud-din, Muhammad ;
Khan, Suleiman A. ;
Wennerberg, Krister ;
Aittokallio, Tero .
BIOINFORMATICS, 2017, 33 (14) :I359-I368
[2]  
Ayati M, 2010, IEEE INT C BIOINFORM, P198, DOI 10.1109/BIBM.2010.5706562
[3]   Pralatrexate with Vitamin Supplementation in Patients with Previously Treated, Advanced Non-small Cell Lung Cancer Safety and Efficacy in a Phase 1 Trial [J].
Azzoli, Christopher G. ;
Patel, Jyoti D. ;
Krug, Lee M. ;
Miller, Vincent ;
James, Leonard ;
Kris, Mark G. ;
Ginsberg, Michelle ;
Subzwari, Sara ;
Tyson, Leslie ;
Dunne, Megan ;
May, Jennifer ;
Huntington, Martha ;
Saunders, Michael ;
Sirotnak, F. M. .
JOURNAL OF THORACIC ONCOLOGY, 2011, 6 (11) :1915-1922
[4]  
Ba JL, 2016, arXiv
[5]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[6]  
Calinski T., 1974, Communications in Statistics-theory and Methods, V3, P1, DOI [DOI 10.1080/03610927408827101, 10.1080/03610927408827101, https://doi.org/10.1080/03610927408827101]
[7]   ChemmineR: a compound mining framework for R [J].
Cao, Yiqun ;
Charisi, Anna ;
Cheng, Li-Chang ;
Jiang, Tao ;
Girke, Thomas .
BIOINFORMATICS, 2008, 24 (15) :1733-1734
[8]   The Ubiquitin-Proteasome System as a Prospective Molecular Target for Cancer Treatment and Prevention [J].
Chen, Di ;
Dou, Q. Ping .
CURRENT PROTEIN & PEPTIDE SCIENCE, 2010, 11 (06) :459-470
[9]   Bioactive triterpenoids from Sambucus java']javanica Blume [J].
Chen, Feilong ;
Liu, Dong-Li ;
Wang, Wei ;
Lv, Xiao-Man ;
Li, Weixi ;
Shao, Li-Dong ;
Wang, Wen-Jing .
NATURAL PRODUCT RESEARCH, 2020, 34 (19) :2816-2821
[10]   A survey and systematic assessment of computational methods for drug response prediction [J].
Chen, Jinyu ;
Zhang, Louxin .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (01) :232-246