Spatial-Temporal Augmentation for Crime Prediction (Student Abstract)

被引:0
|
作者
Fu, Hongzhu [1 ]
Zhou, Fan [1 ,3 ]
Guo, Qing [4 ]
Gao, Qiang [2 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Southwestern Univ Finance & Econ, Chengdu, Peoples R China
[3] Kash Inst Elect & Informat Ind, Varanasi, Uttar Pradesh, India
[4] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
来源
THIRTY-EIGTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 21 | 2024年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Crime prediction stands as a pivotal concern within the realm of urban management due to its potential threats to public safety. While prior research has predominantly focused on unraveling the intricate dependencies among urban regions and temporal dynamics, the challenges posed by the scarcity and uncertainty of historical crime data have not been thoroughly investigated. This study introduces an innovative spatial-temporal augmented learning framework for crime prediction, namely STAug. In STAug, we devise a CrimeMix to improve the ability of generalization. Furthermore, we harness a spatial-temporal aggregation to capture and incorporate multiple correlations covering the temporal, spatial, and crime-type aspects. Experiments on two real-world datasets underscore the superiority of STAug over several baselines.
引用
收藏
页码:23490 / 23491
页数:2
相关论文
共 50 条
  • [41] Spatial-Temporal Relation Reasoning for Action Prediction in Videos
    Wu, Xinxiao
    Wang, Ruiqi
    Hou, Jingyi
    Lin, Hanxi
    Luo, Jiebo
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (05) : 1484 - 1505
  • [42] Spatial-Temporal Large Language Model for Traffic Prediction
    Liu, Chenxi
    Yang, Sun
    Xu, Qianxiong
    Li, Zhishuai
    Long, Cheng
    Li, Ziyue
    Zhao, Rui
    PROCEEDINGS OF THE 2024 25TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT, MDM 2024, 2024, : 31 - 40
  • [43] ANALYSIS OF STATIONARY SPATIAL-TEMPORAL PROCESSES - ESTIMATION AND PREDICTION
    ALI, MM
    BIOMETRIKA, 1979, 66 (03) : 513 - 518
  • [44] Anomaly residual prediction with spatial-temporal and perceptual constraints
    Tang, Wenyi
    Liu, Bin
    Yu, Nenghaif
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (06)
  • [45] A spatial-temporal attention model for human trajectory prediction
    Zhao, Xiaodong
    Chen, Yaran
    Guo, Jin
    Zhao, Dongbin
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (04) : 965 - 974
  • [46] Spatial-temporal ConvLSTM for vehicle driving intention prediction
    Huang, He
    Zeng, Zheni
    Yao, Danya
    Pei, Xin
    Zhang, Yi
    TSINGHUA SCIENCE AND TECHNOLOGY, 2022, 27 (03) : 599 - 609
  • [47] A Spatial-Temporal Attention Model for Human Trajectory Prediction
    Xiaodong Zhao
    Yaran Chen
    Jin Guo
    Dongbin Zhao
    IEEE/CAAJournalofAutomaticaSinica, 2020, 7 (04) : 965 - 974
  • [48] The impact of street lights on spatial-temporal patterns of crime in Detroit, Michigan
    Xu, Yanqing
    Fu, Cong
    Kennedy, Eugene
    Jiang, Shanhe
    Owusu-Agyemang, Samuel
    CITIES, 2018, 79 : 45 - 52
  • [49] Spatial-Temporal ConvLSTM for Vehicle Driving Intention Prediction
    He Huang
    Zheni Zeng
    Danya Yao
    Xin Pei
    Yi Zhang
    Tsinghua Science and Technology, 2022, 27 (03) : 599 - 609
  • [50] Spatial-temporal knowledge graph network for event prediction
    Huai, Zepeng
    Zhang, Dawei
    Yang, Guohua
    Tao, Jianhua
    NEUROCOMPUTING, 2023, 553