Spatial-Temporal Augmentation for Crime Prediction (Student Abstract)

被引:0
|
作者
Fu, Hongzhu [1 ]
Zhou, Fan [1 ,3 ]
Guo, Qing [4 ]
Gao, Qiang [2 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Southwestern Univ Finance & Econ, Chengdu, Peoples R China
[3] Kash Inst Elect & Informat Ind, Varanasi, Uttar Pradesh, India
[4] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
来源
THIRTY-EIGTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 21 | 2024年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Crime prediction stands as a pivotal concern within the realm of urban management due to its potential threats to public safety. While prior research has predominantly focused on unraveling the intricate dependencies among urban regions and temporal dynamics, the challenges posed by the scarcity and uncertainty of historical crime data have not been thoroughly investigated. This study introduces an innovative spatial-temporal augmented learning framework for crime prediction, namely STAug. In STAug, we devise a CrimeMix to improve the ability of generalization. Furthermore, we harness a spatial-temporal aggregation to capture and incorporate multiple correlations covering the temporal, spatial, and crime-type aspects. Experiments on two real-world datasets underscore the superiority of STAug over several baselines.
引用
收藏
页码:23490 / 23491
页数:2
相关论文
共 50 条
  • [31] Improving Location Prediction Based on the Spatial-Temporal Trajectory
    Li, Ping
    Zhu, Xinning
    Miao, Jiansong
    BIG DATA COMPUTING AND COMMUNICATIONS, (BIGCOM 2016), 2016, 9784 : 443 - 452
  • [32] STMG: Spatial-Temporal Mobility Graph for Location Prediction
    Pan, Xuan
    Cai, Xiangrui
    Zhang, Jiangwei
    Wen, Yanlong
    Zhang, Ying
    Yuan, Xiaojie
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT I, 2021, 12681 : 667 - 675
  • [33] Spatial-temporal modeling for prediction of stylized human motion
    Zhong, Chongyang
    Hu, Lei
    Xia, Shihong
    NEUROCOMPUTING, 2022, 511 : 34 - 42
  • [34] Urban flow prediction with spatial-temporal neural ODEs
    Zhou, Fan
    Li, Liang
    Zhang, Kunpeng
    Trajcevski, Goce
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 124
  • [35] Spatial-Temporal Variation and Prediction of Rainfall in Northeastern Nigeria
    Bibi, Umar M.
    Kaduk, Joerg
    Balzter, Heiko
    CLIMATE, 2014, 2 (03): : 206 - 222
  • [36] Temporal Pyramid Network With Spatial-Temporal Attention for Pedestrian Trajectory Prediction
    Li, Yuanman
    Liang, Rongqin
    Wei, Wei
    Wang, Wei
    Zhou, Jiantao
    Li, Xia
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (03): : 1006 - 1019
  • [37] A Spatial-Temporal Attention Model for Human Trajectory Prediction
    Xiaodong Zhao
    Yaran Chen
    Jin Guo
    Dongbin Zhao
    IEEE/CAAJournalofAutomaticaSinica, 2020, 7 (04) : 965 - 974
  • [38] A spatial-temporal attention model for human trajectory prediction
    Zhao, Xiaodong
    Chen, Yaran
    Guo, Jin
    Zhao, Dongbin
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (04) : 965 - 974
  • [39] Spatial-temporal ConvLSTM for vehicle driving intention prediction
    Huang, He
    Zeng, Zheni
    Yao, Danya
    Pei, Xin
    Zhang, Yi
    TSINGHUA SCIENCE AND TECHNOLOGY, 2022, 27 (03) : 599 - 609
  • [40] Dynamic Spatial-Temporal Graph Model for Disease Prediction
    Senthilkumar, Ashwin
    Gupte, Mihir
    Shridevi, S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 950 - 957