Research and application of automatic mapping method of distribution network protection power supply based on knowledge graph and graph convolution network

被引:1
|
作者
Wang, Yu [1 ,2 ]
Mo, Liangyuan [1 ,2 ]
Wang, Wei [1 ,2 ]
Wei, Jie [1 ,2 ]
Yang, Jing [1 ,2 ]
机构
[1] Nanning Power Supply Bur Guangxi Power Grid Co, Ltd, Nanning 530031, Guangxi, Peoples R China
[2] Zhongcambodian Rd, Nanning, Guangxi Zhuang, Peoples R China
关键词
knowledge graph; graph convolutional network; distribution network; automatic mapping; deep learning;
D O I
10.1093/ijlct/ctae037
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study aims to propose an automatic mapping method for distribution network protection based on knowledge graph (KG) and graph convolution network technology and applies it to power system. The relationship between physical entities in power grid is established by constructing KG, and multisource data fusion and analysis are realized by using graph convolution network technology, so as to realize one-click and automatic mapping of power diagram in power supply places. The distinctiveness of this study lies in the incorporation of KG and deep learning techniques into the field of power supply assurance for distribution networks, achieving automated and digitized generation of power supply assurance device diagrams with real-time dynamic updates capability. This innovation significantly enhances the level of digitization and intelligence in power supply assurance work, injecting new vitality into the field of power supply assurance for distribution networks. This method can provide a digital comprehensive and intuitive presentation for the power supply service and effectively improve the ability to grasp the equipment situation and risk situation awareness.
引用
收藏
页码:964 / 971
页数:8
相关论文
共 50 条
  • [21] FERGCN: facial expression recognition based on graph convolution network
    Lei Liao
    Yu Zhu
    Bingbing Zheng
    Xiaoben Jiang
    Jiajun Lin
    Machine Vision and Applications, 2022, 33
  • [22] FERGCN: facial expression recognition based on graph convolution network
    Liao, Lei
    Zhu, Yu
    Zheng, Bingbing
    Jiang, Xiaoben
    Lin, Jiajun
    MACHINE VISION AND APPLICATIONS, 2022, 33 (03)
  • [23] Low-voltage distribution network topology identification method based on knowledge graph
    Gao Z.
    Zhao Y.
    Yu Y.
    Luo Y.
    Xu Z.
    Zhang L.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2020, 48 (02): : 34 - 43
  • [24] A Concurrent Fault Diagnosis Method of Transformer Based on Graph Convolutional Network and Knowledge Graph
    Liu, Liqing
    Wang, Bo
    Ma, Fuqi
    Zheng, Quan
    Yao, Liangzhong
    Zhang, Chi
    Mohamed, Mohamed A.
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [25] Distribution Network Fault Assistant Decision-making Based on Knowledge Graph
    Wang J.
    Yang J.
    Pei Y.
    Zhan X.
    Zhou T.
    Xie P.
    Dianwang Jishu/Power System Technology, 2021, 45 (06): : 2101 - 2112
  • [26] Spatiotemporal convolution sleep network based on graph attention mechanism with automatic feature extraction
    Hu, Yidong
    Shi, Wenbin
    Yeh, Chien-Hung
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 244
  • [27] Construction and application of Knowledge Graph of government policy based on deep neural network
    Liu, Yunfeng
    Zhang, Jian
    Ge, Zhiyuan
    2020 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTER TECHNOLOGY AND TRANSPORTATION (ISCTT 2020), 2020, : 709 - 716
  • [28] A Joint Graph and Image Convolution Network for Automatic Brain Tumor Segmentation
    Saueressig, Camillo
    Berkley, Adam
    Munbodh, Reshma
    Singh, Ritambhara
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 356 - 365
  • [29] GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network
    Yang, Runtao
    Fu, Yao
    Zhang, Qian
    Zhang, Lina
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 150
  • [30] Supply Chain Financial Fraud Detection Based on Graph Neural Network and Knowledge
    Xie, Wenying
    He, Juan
    Huang, Fuyou
    Ren, Jun
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2024, 31 (06): : 2055 - 2063