Feature Selection for Identifying Optimal Microwave Frequencies to Detect Floating Macroplastic Litter in C and X bands

被引:3
作者
da Costa, Tomas Soares [1 ]
Felicio, Joao M. [1 ,2 ]
Vala, Mario [1 ]
Leonor, Nuno [4 ]
Costa, Jorge R. [1 ,3 ]
Marques, Paulo [5 ]
Moreira, Antonio A. [1 ]
Caldeirinha, Rafael [4 ]
Matos, Sergio A. [1 ,3 ]
Fernandes, Carlos A. [1 ]
Fonseca, Nelson J. G. [6 ]
de Maagt, Peter [6 ]
机构
[1] Univ Lisboa UL, Inst Telecomunicacoes IT, Inst Super Tecn IST, Lisbon, Portugal
[2] Escola Naval, Ctr Invest Naval CINAV, Almada, Portugal
[3] Inst Univ Lisboa ISCTE IUL, Lisbon, Portugal
[4] Polytech Inst Leiria IPLeiria, Inst Telecomunicacoes IT, Leiria, Portugal
[5] Inst Super Engn Lisboa ISEL, Lisbon, Portugal
[6] European Space Agcy ESA, Antenna & Sub Millimetre Waves Sect, Noordwijk, Netherlands
来源
2024 18TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP | 2024年
关键词
backscattering; feature selection; floating marine macroplastics; machine learning; microwaves; principal component analysis; scattering measurements; tabular data;
D O I
10.23919/EuCAP60739.2024.10501024
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, the utilisation of microwave (MW) frequencies in remote sensing has emerged as a promising and complementary technology to optical methods for effectively detecting and monitoring floating plastic litter. Still, there is a scarce number of existing studies evaluating the optimal MW band for radar detection, particularly making use of machine learning (ML). To contribute to this topic, we propose a feature selection (FS) workflow based on the weighted principal component analysis (WPCA) algorithm to study the tabular backscattering response of floating macroplastic clusters (made of plastic bottles, straws, lids, and cylinder foams) in C- and X-bands. Specific backscattering radio measurements (units) of sequential frequency points within the MW subbands (features) were carried out in a controlled indoor scenario that mimics deep sea conditions. The experimental results show that, under the tested conditions, the X-band frequencies are more relevant in the presence of floating macroplastic.
引用
收藏
页数:5
相关论文
共 21 条
[1]  
[Anonymous], 2022, Deltares wave facility
[2]   Development of Novel Classification Algorithms for Detection of Floating Plastic Debris in Coastal Waterbodies Using Multispectral Sentinel-2 Remote Sensing Imagery [J].
Basu, Bidroha ;
Sannigrahi, Srikanta ;
Sarkar Basu, Arunima ;
Pilla, Francesco .
REMOTE SENSING, 2021, 13 (08)
[3]   Detection of Low Permittivity Floating Plastic Sheets at Microwave Frequencies [J].
Da Costa, Tomas Soares ;
Felicio, Joao M. ;
Vala, Mario ;
Leonor, Nuno ;
Costa, Jorge R. ;
Marques, Paulo ;
Moreira, Antonio A. ;
Caldeirinha, Rafael ;
Matos, Sergio A. ;
Fernandes, Carlos A. ;
Fonseca, Nelson J. G. ;
De Maag, Peter .
2023 17TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP, 2023,
[4]  
Davaasuren N, 2018, INT GEOSCI REMOTE SE, P938, DOI 10.1109/IGARSS.2018.8517281
[5]   Toward the Detection and Imaging of Ocean Microplastics With a Spaceborne Radar [J].
Evans, Madeline C. ;
Ruf, Christopher S. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[6]   Close-range remote sensing-based detection and identification of macroplastics on water assisted by artificial intelligence: A review [J].
Gnann, Nina ;
Baschek, Bjorn ;
Ternes, Thomas A. .
WATER RESEARCH, 2022, 222
[7]   Concept for a hyperspectral remote sensing algorithm for floating macro plastics [J].
Goddijn-Murphy, Lonneke ;
Peters, Steef ;
Van Sebille, Erik ;
James, Neil A. ;
Gibb, Stuart .
MARINE POLLUTION BULLETIN, 2018, 126 :255-262
[8]  
Hasselmann K., 1973, DEUT HYDROGR Z, V12, P95
[9]   Machine Learning Approach for Wirelessly Powered RFID-Based Backscattering Sensor System [J].
Jeong, Soyeon ;
Tentzeris, Manos M. ;
Kim, Sangkil .
IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, 2020, 4 (03) :186-194
[10]   Deep learning for detecting macroplastic litter in water bodies: A review [J].
Jia, Tianlong ;
Kapelan, Zoran ;
de Vries, Rinze ;
Vriend, Paul ;
Peereboom, Eric Copius ;
Okkerman, Imke ;
Taormina, Riccardo .
WATER RESEARCH, 2023, 231