Analysis of EEG Fluctuation Patterns Using Nonlinear Phase-Based Functional Connectivity Measures for Emotion Recognition

被引:0
|
作者
Kumar, Himanshu [1 ]
Ganapathy, Nagarajan [2 ]
Puthankattil, Subha D. [3 ]
Swaminathan, Ramakrishnan [1 ]
机构
[1] Indian Inst Technol Madras, Dept Appl Mech & Biomed Engn, Chennai 600036, India
[2] Indian Inst Technol Hyderabad, Biomed Engn Dept, Sangareddy 502285, India
[3] Natl Inst Technol Kozhikode, Dept Elect Engn, Calicut 673601, India
来源
FLUCTUATION AND NOISE LETTERS | 2024年 / 23卷 / 05期
关键词
Electroencephalogram (EEG); emotion recognition; functional connectivity; Rho index; MODEL; CLASSIFICATION; SELECTION; LOCKING;
D O I
10.1142/S0219477524500512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Automated emotion recognition is crucial in identifying and monitoring psychological disorders. Although several electroencephalography (EEG)-based methods have been explored for emotion recognition, capturing the subtle oscillations within EEG signals associated with distinct emotional states remains a persistent challenge. Nonlinear phase-based functional connectivity (FC) can capture the intricate time-varying patterns of brain activity during the processing of emotions. In this work, an attempt has been made to characterize the EEG-based emotional states using nonlinear phase-based FC techniques. For this, the EEG signals are obtained from the publicly available DEAP database and decomposed into four frequency bands: Theta (4-7Hz), alpha (8-12Hz), beta (13-30Hz) and gamma (30-45Hz). Three nonlinear phase-based FC measures, namely phase lag index (PLI), phase locking value (PLV) and Rho index, are extracted from individual frequency bands. Two types of features, namely network features and FC indices, are fed to three classifiers, namely random forest (RF), extreme gradient boosting (XGB) and K-Nearest Neighbors (KNN). The results reveal that the proposed approach can capture EEG dynamics to characterize emotional states. The gamma band-based Rho index demonstrated prominence in discriminating arousal and valence emotional states. The utilization of the Rho index-based FC feature effectively reveals interactions among cortical brain regions in response to audio-visual stimuli. Thus, the proposed approach could be extended to classifying various emotional states in clinical settings.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Spectral Subtraction Based Emotion Recognition Using EEG
    Min, Jin-Hong
    Kwon, Hyeong-Oh
    Hong, Kwang-Seok
    HUMAN-COMPUTER INTERACTION: TOWARDS MOBILE AND INTELLIGENT INTERACTION ENVIRONMENTS, PT III, 2011, 6763 : 569 - 576
  • [32] Performance analysis of EEG based emotion recognition using deep learning models
    Margaret, M. Jehosheba
    Banu, N. M. Masoodhu
    BRAIN-COMPUTER INTERFACES, 2023, 10 (2-4) : 79 - 98
  • [33] Developing an EEG-Based Emotion Recognition Using Ensemble Deep Learning Methods and Fusion of Brain Effective Connectivity Maps
    Bagherzadeh, Sara
    Shalbaf, Ahmad
    Shoeibi, Afshin
    Jafari, Mahboobeh
    Tan, Ru-San
    Acharya, U. Rajendra
    IEEE ACCESS, 2024, 12 : 50949 - 50965
  • [34] An art therapy evaluation method based on emotion recognition using EEG deep temporal features
    Tang, Zhichuan
    Li, Xintao
    Xia, Dan
    Hu, Yidan
    Zhang, Lingtao
    Ding, Jun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (05) : 7085 - 7101
  • [35] Adaptive construction of critical brain functional networks for EEG-based emotion recognition
    Zhao, Ying
    He, Hong
    Bi, Xiaoying
    Lu, Yue
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (06)
  • [36] Emotion discrimination using source connectivity analysis based on dynamic ROI identification
    Kouti, Mayadeh
    Ansari-Asl, Karim
    Namjoo, Ehsan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 72
  • [37] Functional Connectivity Network Based Emotion Recognition Combining Sample Entropy
    Zhang, Shilin
    Hu, Bin
    Ji, Cun
    Zheng, Xiangwei
    Zhang, Min
    IFAC PAPERSONLINE, 2020, 53 (05): : 458 - 463
  • [38] Depressive Disorders Recognition by Functional Connectivity Using Graph Convolutional Network Based on EEG Microstates
    Su, Yun
    Cai, Qi
    Chang, Qi
    Zhou, Yueyang
    Huang, Runhe
    2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,
  • [39] Analysis of EEG Signals for Emotion Recognition Using Different Computational Intelligence Techniques
    Ray, Papia
    Mishra, Debani Prasad
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, VOL 2, 2019, 697 : 527 - 536
  • [40] Functional and effective connectivity based features of EEG signals for object recognition
    Taban Fami Tafreshi
    Mohammad Reza Daliri
    Mahrad Ghodousi
    Cognitive Neurodynamics, 2019, 13 : 555 - 566