Exceptional Nitrate Reduction to Ammonia Catalyst Enabled by BO2- Anion Induction Effects Combining Heterogeneous Branching Architecture-Driven Mass Transport Enhancement

被引:3
作者
Ding, Liping [1 ]
Yan, Han [1 ]
Zhang, Lin [1 ]
Bai, Ruijie [2 ]
Du, Qian [2 ]
Xu, Chun [2 ]
Gu, Haojie [1 ]
Guo, Suer [1 ]
Cheng, Guoxia [1 ]
Fu, Qiaomei [1 ]
Liu, Siqi [1 ]
Yin, Kang [1 ]
Li, Qi [1 ]
Wang, Yanqing [1 ]
机构
[1] Nantong Univ, Sch Chem & Chem Engn, Nantong 226007, Peoples R China
[2] Nantong Univ, Sch Mech Engn, Nantong 226007, Peoples R China
基金
中国国家自然科学基金;
关键词
3D biomimetic design; 3D printing; ammonia electrosynthesis; anion induction effect; heterogeneous branching architecture-driven mass transport enhancement;
D O I
10.1002/aenm.202402301
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, an exceptional nitrate reduction to ammonia catalyst is reported, enabled by BO2- anion induction effects combining heterogeneous branching architecture-driven mass transport enhancement strategies. The implantation of the BO2- anion can inductively enhance the electron cloud density and electron transmission paths of intrinsic catalysts, makes electron more active to improve the conductivity, regulates the adsorption and desorption rates of intermediates by space barrier effect, reduces the binding energy of the electron and 3d orbital of Ni in NiFe(BO2)O(OH), thereby lowing the transform free energy of the determining *NO3 to *HNO3 step. 3D hollow sea urchin lattice heterogeneous branching structure can self-drive generate differentiated micro convection intervals, which will be beneficial for improving mass transfer dynamics especially localized disturbance mass transfer effect of catalyst for nitrate reduction reaction (NO3RR) catalysis process. Amazingly, the as-prepared 3D NiFe metaborate oxyhydroxide hollow bionic sea urchins lattice catalyst has a high NH3 rate 6.27mmol<middle dot>h(-1)<middle dot>cm(-2) with 98.7% Faradaic efficiency at low -0.25V(vs RHE) NO3RR potential. Moreover, the catalytic activity of this highly stable catalyst decreases only slightly over 100 h at ultra-high 1500mA<middle dot>cm(-2) current. This work breaks through the bottleneck that plagues the performance improvement of non Cu-based high-current NO3RR catalysts.
引用
收藏
页数:12
相关论文
共 34 条
[21]   Built-in Electric Field Triggered Interfacial Accumulation Effect for Efficient Nitrate Removal at Ultra-Low Concentration and Electroreduction to Ammonia [J].
Sun, Wu-Ji ;
Ji, Hao-Qing ;
Li, Lan-Xin ;
Zhang, Hao-Yu ;
Wang, Zhen-Kang ;
He, Jing-Hui ;
Lu, Jian-Mei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (42) :22933-22939
[22]   Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption [J].
Wang, Yuhang ;
Xu, Aoni ;
Wang, Ziyun ;
Huang, Linsong ;
Li, Jun ;
Li, Fengwang ;
Wicks, Joshua ;
Luo, Mingchuan ;
Nam, Dae-Hyun ;
Tan, Chih-Shan ;
Ding, Yu ;
Wu, Jiawen ;
Lum, Yanwei ;
Cao-Thang Dinh ;
Sinton, David ;
Zheng, Gengfeng ;
Sargent, Edward H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (12) :5702-5708
[23]   Unveiling the Activity Origin of a Copper-based Electrocatalyst for Selective Nitrate Reduction to Ammonia [J].
Wang, Yuting ;
Zhou, Wei ;
Jia, Ranran ;
Yu, Yifu ;
Zhang, Bin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (13) :5350-5354
[24]   Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying [J].
Wang, Zixuan ;
Young, Samuel D. ;
Goldsmith, Bryan R. ;
Singh, Nirala .
JOURNAL OF CATALYSIS, 2021, 395 :143-154
[25]   Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst [J].
Wu, Zhen-Yu ;
Karamad, Mohammadreza ;
Yong, Xue ;
Huang, Qizheng ;
Cullen, David A. ;
Zhu, Peng ;
Xia, Chuan ;
Xiao, Qunfeng ;
Shakouri, Mohsen ;
Chen, Feng-Yang ;
Kim, Jung Yoon ;
Xia, Yang ;
Heck, Kimberly ;
Hu, Yongfeng ;
Wong, Michael S. ;
Li, Qilin ;
Gates, Ian ;
Siahrostami, Samira ;
Wang, Haotian .
NATURE COMMUNICATIONS, 2021, 12 (01)
[26]   Potential-Driven Restructuring of Cu Single Atoms to Nanoparticles for Boosting the Electrochemical Reduction of Nitrate to Ammonia [J].
Yang, Ji ;
Qi, Haifeng ;
Li, Anqi ;
Liu, Xiaoyan ;
Yang, Xiaofeng ;
Zhang, Shengxin ;
Zhao, Qiao ;
Jiang, Qike ;
Su, Yang ;
Zhang, Leilei ;
Li, Jian-Feng ;
Tian, Zhong-Qun ;
Liu, Wei ;
Wang, Aiqin ;
Zhang, Tao .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (27) :12062-12071
[27]   Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide [J].
Ye, Shenghua ;
Chen, Zhida ;
Zhang, Guikai ;
Chen, Wenda ;
Peng, Chao ;
Yang, Xiuyuan ;
Zheng, Lirong ;
Li, Yongliang ;
Ren, Xiangzhong ;
Cao, Huiqun ;
Xue, Dongfeng ;
Qiu, Jieshan ;
Zhang, Qianling ;
Liu, Jianhong .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (02) :760-770
[28]   Vacancy-enabled N2activation for ammonia synthesis on an Ni-loaded catalyst [J].
Ye, Tian-Nan ;
Park, Sang-Won ;
Lu, Yangfan ;
Li, Jiang ;
Sasase, Masato ;
Kitano, Masaaki ;
Tada, Tomofumi ;
Hosono, Hideo .
NATURE, 2020, 583 (7816) :391-+
[29]   Boosting electrochemical nitrate-ammonia conversion via organic ligands-tuned proton transfer [J].
Yu, Jiaying ;
Qin, Yongjie ;
Wang, Xiaodeng ;
Zheng, Hongju ;
Gao, Keru ;
Yang, Hengpan ;
Xie, Laiyong ;
Hu, Qi ;
He, Chuanxin .
NANO ENERGY, 2022, 103
[30]   Additive manufacturing 3D customizable low-cost superwetting polyacrylate-based hierarchically micro-nanoporous lattice anode for energy-saving large-current-density water splitting application [J].
Zhang, Lin ;
Li, Gaoyuan ;
Yan, Han ;
Chen, Shuyan ;
Tu, Haibiao ;
Su, Jianmin ;
Qiu, Mingle ;
Zhao, Shuaishuai ;
Sun, Tongming ;
Li, Qi ;
Ding, Liping ;
Wang, Yanqing .
COMPOSITES PART B-ENGINEERING, 2022, 245