Numerical approximations of groundwater flow problem using fractional variational iteration method with fractional derivative of singular and nonsingular kernels

被引:0
作者
Kumar, Pravindra [1 ]
Yadav, Mahaveer Prasad [1 ]
机构
[1] Amity Univ, Dept Math, Jaipur, Rajasthan, India
来源
INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY | 2024年 / 16卷 / SUPP01期
关键词
Boussinesq equation; groundwater flow; Caputo and Caputo-Fabrizio fractional operators; fractional variational iteration method; ADOMIAN DECOMPOSITION METHOD; BOUSSINESQ EQUATION; MODEL;
D O I
10.1142/S2661335224500084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study aims to present the numerical approximations of groundwater flow problem, namely the time-fractional Boussinesq equation using the fractional variational iteration method. Fractional derivatives in time variable are taken in Caputo and Caputo-Fabrizio sense. This work compares the solutions of the time-fractional Boussinesq equation for the Caputo and Caputo-Fabrizio fractional operators. Graphical representation of the water table head's behavior for different time values is shown.
引用
收藏
页数:15
相关论文
共 44 条
[1]  
Agarwal R., 2019, J DISCONTINUITY NONL, V8, P341, DOI DOI 10.5890/DNC.2019.09.009
[2]   Analysis of the Multi-Dimensional Navier-Stokes Equation by Caputo Fractional Operator [J].
Albalawi, Kholoud Saad ;
Mishra, Manvendra Narayan ;
Goswami, Pranay .
FRACTAL AND FRACTIONAL, 2022, 6 (12)
[3]  
Alqahtani AM, 2024, Progr Fract Diff Appl., V1, P119, DOI [10.18576/pfda/100112, DOI 10.18576/PFDA/100112]
[4]   Computational analysis of multi-layered Navier-Stokes system by Atangana-Baleanu derivative [J].
Alqahtani, Awatif Muflih ;
Shukla, Akanksha .
APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2024, 32 (01)
[5]   Numerical Solution of Fractional Model of HIV-1 Infection in Framework of Different Fractional Derivatives [J].
Alzaid, Sara Salem ;
Alkahtani, Badr Saad T. ;
Sharma, Shivani ;
Dubey, Ravi Shanker .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[6]  
[Anonymous], 1863, Etudes Theoriques et Pratiques sur le mouvement des Eaux dans les canaux decouverts et a travers les terrains permeables
[7]  
Bildik N, 2006, INT J NONLIN SCI NUM, V7, P65
[8]  
Boussinesq J., 1904, J. de Math. Pures Appl., V10, P5
[9]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[10]  
Caputo M., 2015, PROG FRACT DIFFER AP, V1, P73, DOI DOI 10.12785/PFDA/010201