An extended nonconforming finite element method for the coupled Darcy-Stokes problem

被引:0
作者
Cao, Pei [1 ,2 ]
Chen, Jinru [2 ,3 ]
机构
[1] Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS, Minist Educ, Nanjing 210023, Peoples R China
[3] Jiangsu Second Normal Univ, Sch Math Sci, Nanjing 211200, Peoples R China
基金
中国国家自然科学基金; 芬兰科学院;
关键词
The coupled Darcy-Stokes problem; Extended nonconforming finite element; Inf-sup condition; Optimal convergence; Curved interface; CROUZEIX-RAVIART ELEMENT; POROUS-MEDIA; FLUID-FLOW; MODEL; DISCRETIZATION;
D O I
10.1016/j.cam.2024.116092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An extended nonconforming finite element method for solving the coupled Darcy-Stokes problem with straight or curved interfaces is proposed and analyzed. The approach applies the same Crouzeix-Raviart discretization in both regions. By introducing some stabilization terms, the discrete inf-sup condition and optimal a priori estimate are derived. In the end, some numerical experiments are presented to demonstrate the theoretical results.
引用
收藏
页数:21
相关论文
共 43 条
  • [1] Adams R. A., 2003, SOBOLEV SPACES, V140
  • [2] BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL
    BEAVERS, GS
    JOSEPH, DD
    [J]. JOURNAL OF FLUID MECHANICS, 1967, 30 : 197 - &
  • [3] A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity
    Becker, Roland
    Burman, Erik
    Hansbo, Peter
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (41-44) : 3352 - 3360
  • [4] Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
  • [5] 2-S
  • [6] Mortar finite element discretization of a model coupling Darcy and Stokes equations
    Bernardi, Christine
    Rebollo, Tomas Chacon
    Hecht, Frederic
    Mghazli, Zoubida
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (03): : 375 - 410
  • [7] BRENNER S. C., 2008, The mathematical theory of finite element methods, V3rd
  • [8] Brenner SC, 2004, MATH COMPUT, V73, P1067
  • [9] Brezzi F., 1991, SPRINGER SERIES COMP, V15
  • [10] Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem
    Burman, E
    Hansbo, P
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (05) : 986 - 997