Influencing factors and the establishment of a basin ecological compensation mechanism from the perspective of water conservation: A case study of the upper Yangtze River in China

被引:15
作者
Guan, Dongjie [1 ]
Chen, Shi [1 ]
Zhang, Yuxiang [1 ,2 ,3 ]
Liu, Zhifeng [3 ,4 ,5 ]
Peng, Guochuan [2 ,6 ]
Zhou, Lilei [1 ,2 ]
机构
[1] Chongqing Jiaotong Univ, Sch Smart City, 66 Xuefu Rd, Chongqing 400074, Peoples R China
[2] Chongqing Acad Social Sci, Res Ctr Ecol Secur & Green Dev, Chongqing 400020, Peoples R China
[3] China Geol Survey, Appl Geol Res Ctr, Chengdu 610036, Peoples R China
[4] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol E, Beijing 100875, Peoples R China
[5] Beijing Normal Univ, Fac Geog Sci, Sch Nat Resources, Beijing 100875, Peoples R China
[6] Chongqing Acad Social Sci, Inst Ecol & Environm Resources, Chongqing 400020, Peoples R China
基金
中国国家自然科学基金;
关键词
Ecological compensation threshold; Land use conversion; Water conservation; Optimal parameters-based geographical detec; tor; Upper Yangtze River basin; WILLINGNESS-TO-PAY; SUSTAINABLE DEVELOPMENT;
D O I
10.1016/j.jclepro.2024.142332
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Under the dual impacts of global environmental degradation and human activities, ecosystem service functions have steadily declined. Ecological compensation has emerged as an important direct and efficient motivator for countries to implement ecosystem protection and restoration. At present, few studies have considered ways in which to establish ecological compensation mechanisms or have analyze the related influencing factors. The ecological compensation threshold is in the conceptual analysis stage; thus, quantitative simulation studies are lacking. In this study, the relationship between water conservation and ecological compensation was analyzed. Scenario simulation and the minimum data method were combined to establish an ecological compensation mechanism for the upper Yangtze River (UYR) basin, and the ecological compensation thresholds were quantitatively assessed. Finally, the factors influencing ecological compensation and the interactions among the factors were analyzed using an optimal parameters-based geographical detector. The results showed that (1) the different land use scenarios for the UYR resulted in notable water conservation differences, with greater differences under the fallow-to-forest scenario than under the fallow-to-grass scenario and existing scenario. (2) Furthermore, 27 subbasins were suitable for the implementation of the fallow-to-forest scenario, with an average ecological compensation threshold of 46.48 yuan/m3 and an average new water conservation amount of 22.02 x 108 m3; and 21 subbasins were suitable for the implementation of the fallow-to-grass scenario, with an average ecological compensation threshold of 107.87 yuan/m3 and an average new water conservation amount of 3.72 x 108 m3. (3) The drivers with the highest and lowest impacts on the ecological compensation thresholds were the grain yield and NDVI, respectively, while their impacts on ecological compensation were significantly enhanced by interactions among the influencing factors. In this study, the differences in ecological compensation standards were compared at the basin scale and administrative scale in different regions worldwide. Moreover, the need to establish a basin-scale ecological compensation mechanism as an effective reference for promoting the implementation and development of ecological compensation policies was explored.
引用
收藏
页数:20
相关论文
共 66 条
[1]   Assessing the value of forest resources to rural households: A case of forest-fringe communities in the Northern Region of Ghana [J].
Amadu, Misbawu ;
Ayamga, Michael ;
Mabe, Franklin N. .
ENVIRONMENTAL DEVELOPMENT, 2021, 37
[2]   Modelling the supply of ecosystem services from agriculture: a minimum-data approach [J].
Antle, JM ;
Valdivia, RO .
AUSTRALIAN JOURNAL OF AGRICULTURAL AND RESOURCE ECONOMICS, 2006, 50 (01) :1-15
[3]   Operationalisation of ecological compensation - Obstacles and ways forward [J].
Blicharska, Malgorzata ;
Hedblom, Marcus ;
Josefsson, Jonas ;
Widenfalk, Olof ;
Ranius, Thomas ;
Ockinger, Erik ;
Widenfalk, Lina A. .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 304
[4]   Influence of the ecosystem conversion process on the carbon and water cycles in different regions of China [J].
Chen, Wei ;
Li, Guangchao ;
Wang, Dongliang ;
Yang, Zhen ;
Wang, Zhe ;
Zhang, Xuepeng ;
Peng, Bo ;
Bi, Pengshuai ;
Zhang, Fengjiao .
ECOLOGICAL INDICATORS, 2023, 148
[5]   Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin [J].
Cong, Wencui ;
Sun, Xiaoyin ;
Guo, Hongwei ;
Shan, Ruifeng .
ECOLOGICAL INDICATORS, 2020, 112
[6]   The social benefits of restoring water quality in the context of the Water Framework Directive: A comparison of willingness to pay and willingness to accept [J].
Del Saz-Salazar, Salvador ;
Hernandez-Sancho, Francesc ;
Sala-Garrido, Ramon .
SCIENCE OF THE TOTAL ENVIRONMENT, 2009, 407 (16) :4574-4583
[7]   Influence of soil geography on the occurrence and intensity of gully erosion in the Hengduan Mountain region [J].
Dong, Yifan ;
Cao, Wenyue ;
Nie, Yong ;
Xiong, Donghong ;
Cheng, Shuxian ;
Duan, Xingwu .
CATENA, 2023, 222
[8]   Ecological compensation in the Beijing-Tianjin-Hebei region based on ecosystem services flow [J].
Du, Heqiu ;
Zhao, Li ;
Zhang, Pengtao ;
Li, Jinxiao ;
Yu, Shuo .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 331
[9]   Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications [J].
Fan, Yupeng ;
Fang, Chuanglin ;
Zhang, Qiang .
JOURNAL OF CLEANER PRODUCTION, 2019, 229 :289-298
[10]   Spatial-temporal analysis of ecosystem services value and research on ecological compensation in Taihu Lake Basin of Jiangsu Province in China from 2005 to 2018 [J].
Gao, Xin ;
Shen, Juqin ;
He, Weijun ;
Zhao, Xu ;
Li, Zhichao ;
Hu, Weifang ;
Wang, Jingzhe ;
Ren, Yingjie ;
Zhang, Xin .
JOURNAL OF CLEANER PRODUCTION, 2021, 317