Influencing factors and the establishment of a basin ecological compensation mechanism from the perspective of water conservation: A case study of the upper Yangtze River in China

被引:5
作者
Guan, Dongjie [1 ]
Chen, Shi [1 ]
Zhang, Yuxiang [1 ,2 ,3 ]
Liu, Zhifeng [3 ,4 ,5 ]
Peng, Guochuan [2 ,6 ]
Zhou, Lilei [1 ,2 ]
机构
[1] Chongqing Jiaotong Univ, Sch Smart City, 66 Xuefu Rd, Chongqing 400074, Peoples R China
[2] Chongqing Acad Social Sci, Res Ctr Ecol Secur & Green Dev, Chongqing 400020, Peoples R China
[3] China Geol Survey, Appl Geol Res Ctr, Chengdu 610036, Peoples R China
[4] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol E, Beijing 100875, Peoples R China
[5] Beijing Normal Univ, Fac Geog Sci, Sch Nat Resources, Beijing 100875, Peoples R China
[6] Chongqing Acad Social Sci, Inst Ecol & Environm Resources, Chongqing 400020, Peoples R China
基金
中国国家自然科学基金;
关键词
Ecological compensation threshold; Land use conversion; Water conservation; Optimal parameters-based geographical detec; tor; Upper Yangtze River basin; WILLINGNESS-TO-PAY; SUSTAINABLE DEVELOPMENT;
D O I
10.1016/j.jclepro.2024.142332
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Under the dual impacts of global environmental degradation and human activities, ecosystem service functions have steadily declined. Ecological compensation has emerged as an important direct and efficient motivator for countries to implement ecosystem protection and restoration. At present, few studies have considered ways in which to establish ecological compensation mechanisms or have analyze the related influencing factors. The ecological compensation threshold is in the conceptual analysis stage; thus, quantitative simulation studies are lacking. In this study, the relationship between water conservation and ecological compensation was analyzed. Scenario simulation and the minimum data method were combined to establish an ecological compensation mechanism for the upper Yangtze River (UYR) basin, and the ecological compensation thresholds were quantitatively assessed. Finally, the factors influencing ecological compensation and the interactions among the factors were analyzed using an optimal parameters-based geographical detector. The results showed that (1) the different land use scenarios for the UYR resulted in notable water conservation differences, with greater differences under the fallow-to-forest scenario than under the fallow-to-grass scenario and existing scenario. (2) Furthermore, 27 subbasins were suitable for the implementation of the fallow-to-forest scenario, with an average ecological compensation threshold of 46.48 yuan/m3 and an average new water conservation amount of 22.02 x 108 m3; and 21 subbasins were suitable for the implementation of the fallow-to-grass scenario, with an average ecological compensation threshold of 107.87 yuan/m3 and an average new water conservation amount of 3.72 x 108 m3. (3) The drivers with the highest and lowest impacts on the ecological compensation thresholds were the grain yield and NDVI, respectively, while their impacts on ecological compensation were significantly enhanced by interactions among the influencing factors. In this study, the differences in ecological compensation standards were compared at the basin scale and administrative scale in different regions worldwide. Moreover, the need to establish a basin-scale ecological compensation mechanism as an effective reference for promoting the implementation and development of ecological compensation policies was explored.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Research on Water Ecological Resilience Measurement and Influencing Factors: A Case Study of the Yangtze River Economic Belt, China
    Yang, Li
    Xu, Yue
    Zhu, Junqi
    Sun, Keyu
    SUSTAINABILITY, 2024, 16 (16)
  • [2] How to measure the ecological compensation threshold in the upper Yangtze River basin, China? An approach for coupling InVEST and grey water footprint
    Guan, Dongjie
    Wu, Lei
    Cheng, Lidan
    Zhang, Yuxiang
    Zhou, Lilei
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [3] Impact of climatic factors on vegetation dynamics in the upper Yangtze River basin in China
    ZHANG Yu-xin
    WANG Yu-kuan
    FU Bin
    DIXIT Amod Mani
    CHAUDHARY Suresh
    WANG Shan
    JournalofMountainScience, 2020, 17 (05) : 1235 - 1250
  • [4] Impact of climatic factors on vegetation dynamics in the upper Yangtze River basin in China
    Yu-xin Zhang
    Yu-kuan Wang
    Bin Fu
    Amod Mani Dixit
    Suresh Chaudhary
    Shan Wang
    Journal of Mountain Science, 2020, 17 : 1235 - 1250
  • [5] A comprehensive model of basin ecological compensation funds-A case study of the Yellow River Basin in China
    Zhang, Jie
    Zou, Jinwen
    Zhang, Kaiyi
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2023, 11
  • [6] Impact of climatic factors on vegetation dynamics in the upper Yangtze River basin in China
    Zhang, Yu-xin
    Wang, Yu-kuan
    Fu, Bin
    Dixit, Amod Mani
    Chaudhary, Suresh
    Wang, Shan
    JOURNAL OF MOUNTAIN SCIENCE, 2020, 17 (05) : 1235 - 1250
  • [7] Farmers' Sustainable Strategies for Soil Conservation on Sloping Arable Lands in the Upper Yangtze River Basin, China
    Tang, Qiang
    He, Chansheng
    He, Xiubin
    Bao, Yuhai
    Zhong, Ronghua
    Wen, Anbang
    SUSTAINABILITY, 2014, 6 (08): : 4795 - 4806
  • [8] The Impact on the Ecosystem Services Value of the Ecological Shelter Zone Reconstruction in the Upper Reaches Basin of the Yangtze River in China
    Yu, Zhilei
    Qin, Tianling
    Yan, Dengming
    Yang, Meijian
    Yu, Hexin
    Shi, Wanli
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2018, 15 (10)
  • [9] Mapping the flood mitigation services of ecosystems - A case study in the Upper Yangtze River Basin
    Fu, B.
    Wang, Y. K.
    Xu, P.
    Yan, K.
    ECOLOGICAL ENGINEERING, 2013, 52 : 238 - 246
  • [10] Spatial-Temporal Dynamics of Water Conservation in Gannan in the Upper Yellow River Basin of China
    Che, Xichen
    Jiao, Liang
    Zhu, Xuli
    Wu, Jingjing
    Li, Qian
    LAND, 2023, 12 (07)