Analytical properties and the box-counting dimension of nonlinear hidden variable recurrent fractal interpolation functions constructed by using Rakotch's fixed point theorem

被引:0
作者
Ro, ChungIl [1 ]
Yun, CholHui [2 ]
机构
[1] Kim Chaek Univ Technol, Fac Appl Math, Pyongyang, North Korea
[2] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
关键词
Recurrent fractal interpolation function; Hidden variable; Rakotch fixed point theorem; Ho <spacing diaeresis>lder continuous function; Smoothness; Stability; Box -counting dimension; STABILITY; SURFACES;
D O I
10.1016/j.amc.2024.128901
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Rakotch contraction is a generalization of Banach contraction, which implies that in the case of using Rakotch's fixed point theorem, we can model more objects than using Banach's fixed point theorem. Moreover, hidden variable recurrent fractal interpolation functions (HVRFIFs) with Ho<spacing diaeresis>lder function factors are more general than the fractal interpolation functions (FIFs), recurrent FIFs and hidden variable FIFs with Lipschitz function factors. We demonstrate that HVRFIFs can be constructed using the Rakotch's fixed point theorem, and then investigate the analytical and geometric properties of those HVRFIFs. Firstly, we construct a nonlinear hidden variable recurrent fractal interpolation functions with Ho<spacing diaeresis>lder function factors on the basis of a given data set using Rakotch contractions. Next, we analyze the smoothness of the HVRFIFs and show that they are stable on the small perturbations of the given data. Finally, we get the lower and upper bounds for their box-counting dimensions.
引用
收藏
页数:17
相关论文
共 31 条
  • [1] [Anonymous], 1973, Non-negative Matrices and Markov Chains
  • [2] RECURRENT ITERATED FUNCTION SYSTEMS
    BARNSLEY, MF
    ELTON, JH
    HARDIN, DP
    [J]. CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) : 3 - 31
  • [3] HIDDEN VARIABLE FRACTAL INTERPOLATION FUNCTIONS
    BARNSLEY, MF
    ELTON, J
    HARDIN, D
    MASSOPUST, P
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) : 1218 - 1242
  • [4] FRACTAL FUNCTIONS AND INTERPOLATION
    BARNSLEY, MF
    [J]. CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) : 303 - 329
  • [5] Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension
    Bouboulis, P.
    Dalla, Leoni
    Drakopoulos, V.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2006, 141 (02) : 99 - 117
  • [6] Hidden variable vector valued fractal interpolation functions
    Bouboulis, P
    Dalla, L
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2005, 13 (03) : 227 - 232
  • [7] Stability of affine coalescence hidden variable fractal interpolation functions
    Chand, A. K. B.
    Kapoor, G. P.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (12) : 3757 - 3770
  • [8] Chand A.K.B., 2007, Int. J. Non-Linear Sci., V3, P15
  • [9] On stability of fractal interpolation
    Feng, ZG
    Xie, HP
    [J]. FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1998, 6 (03): : 269 - 273
  • [10] Fractal interpolation surfaces with function vertical scaling factors
    Feng, Zhigang
    Feng, Yizhuo
    Yuan, Zhenyou
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 1896 - 1900