Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine

被引:4
|
作者
Chandra, Dilip Kumar [1 ]
Reis, Rui L. [2 ,3 ]
Kundu, Subhas C. [2 ,3 ]
Kumar, Awanish [1 ]
Mahapatra, Chinmaya [1 ]
机构
[1] Natl Inst Technol Raipur, Dept Biotechnol, Raipur 492010, Chhattisgarh, India
[2] Univ Minho, I3Bs Res Inst Biomat Biodegradables & Biomimet, Headquarters European Inst Excellence Tissue Engn, 3Bs Res Grp, P-4805017 Guimaraes, Portugal
[3] ICVS 3Bs PT Govt Associate Lab, P-4800058 Braga, Portugal
来源
ACS BIOMATERIALS SCIENCE & ENGINEERING | 2024年 / 10卷 / 07期
关键词
3D bioprinting; hybrid bioink; nanomaterials; tissue regenerations; MECHANICAL-PROPERTIES; COMPOSITE HYDROGEL; ALGINATE; SCAFFOLDS; PRINTABILITY; GELATIN; DIFFERENTIATION; NANOCLAY; INKS; NANOPARTICLES;
D O I
10.1021/acsbiomaterials.4c00166
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.
引用
收藏
页码:4145 / 4174
页数:30
相关论文
共 50 条
  • [1] Clay Minerals as Bioink Ingredients for 3D Printing and 3D Bioprinting: Application in Tissue Engineering and Regenerative Medicine
    Garcia-Villen, Fatima
    Ruiz-Alonso, Sandra
    Lafuente-Merchan, Markel
    Gallego, Idoia
    Sainz-Ramos, Myriam
    Saenz-del-Burgo, Laura
    Pedraz, Jose Luis
    PHARMACEUTICS, 2021, 13 (11)
  • [2] ECM Based Bioink for Tissue Mimetic 3D Bioprinting
    Nam, Seung Yun
    Park, Sang-Hyug
    BIOMIMETIC MEDICAL MATERIALS: FROM NANOTECHNOLOGY TO 3D BIOPRINTING, 2018, 1064 : 335 - 353
  • [3] A comparative study in the printability of a bioink and 3D models across two bioprinting platforms
    Alonzo, Matthew
    Dominguez, Erick
    Alvarez-Primo, Fabian
    Quinonez, Amado
    Munoz, Erik
    Puebla, Jazmin
    Barron, Antonio
    Aguirre, Luis
    Vargas, Ana
    Ramirez, Jean M.
    Joddar, Binata
    MATERIALS LETTERS, 2020, 264
  • [4] Fibrinogen-Based Bioink for Application in Skin Equivalent 3D Bioprinting
    Cavallo, Aida
    Al Kayal, Tamer
    Mero, Angelica
    Mezzetta, Andrea
    Guazzelli, Lorenzo
    Soldani, Giorgio
    Losi, Paola
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2023, 14 (09)
  • [5] 3D bioprinting technology for regenerative medicine applications
    Sundaramurthi, Dhakshinamoorthy
    Rauf, Sakandar
    Hauser, Charlotte A. E.
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2016, 2 (02) : 9 - 26
  • [6] Classification, processing, and applications of bioink and 3D bioprinting: A detailed review
    Raees, Sania
    Ullah, Faheem
    Javed, Fatima
    Akil, Hazizan Md.
    Khan, Muhammad Jadoon
    Safdar, Muhammad
    Din, Israf Ud
    Alotaibi, Mshari A.
    Alharthi, Abdulrahman I.
    Bakht, M. Afroz
    Ahmad, Akil
    Nassar, Amal A.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 232
  • [7] Advancing Cartilage Tissue Engineering: A Review of 3D Bioprinting Approaches and Bioink Properties
    Boretti, Gabriele
    Amirfallah, Arsalan
    Edmunds, Kyle J.
    Hamzehpour, Helena
    Sigurjonsson, Olafur E.
    TISSUE ENGINEERING PART B-REVIEWS, 2024,
  • [8] Design approaches for 3D cell culture and 3D bioprinting platforms
    Sreepadmanabh, M.
    Arun, Ashitha B.
    Bhattacharjee, Tapomoy
    BIOPHYSICS REVIEWS, 2024, 5 (02):
  • [9] 3D Bioprinting of Self-Standing Silk-Based Bioink
    Zheng, Zhaozhu
    Wu, Jianbing
    Liu, Meng
    Wang, Heng
    Li, Chunmei
    Rodriguez, Maria J.
    Li, Gang
    Wang, Xiaoqin
    Kaplan, David L.
    ADVANCED HEALTHCARE MATERIALS, 2018, 7 (06)
  • [10] Composite hydrogels and their application for 3D Bioprinting in the Regenerative medicine
    Valchanov, Petar
    Pavlov, Stoyan
    Chervenkov, Trifon
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON BIOMEDICAL INNOVATIONS AND APPLICATIONS (BIA 2020), 2020, : 25 - 28