BIKED: A DATASET AND MACHINE LEARNING BENCHMARKS FOR DATA-DRIVEN BICYCLE DESIGN

被引:0
|
作者
Regenwetter, Lyle [1 ]
Curry, Brent [2 ]
Ahmed, Faez [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] BikeCAD Ca, Ottawa, ON K1J 6E9, Canada
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present "BIKED," a dataset comprised of 4500 individually designed bicycle models sourced from hundreds of designers. We expect BIKED to enable a variety of data-driven design applications for bicycles and support the development of data-driven design methods. The dataset is comprised of a variety of design information including assembly images, component images, numerical design parameters, and class labels. In this paper, we first discuss the processing of the dataset, then highlight some prominent research questions that BIKED can help address. Of these questions, we further explore the following in detail: 1) Are there prominent gaps in the current bicycle market and design space? We explore the design space using unsupervised dimensionality reduction methods. 2) How does one identify the class of a bicycle and what factors play a key role in defining it? We address the bicycle classification task by training a multitude of classifiers using different forms of design data and identifying parameters of particular significance through permutation-based interpretability analysis. 3) How does one synthesize new bicycles using different representation methods? We consider numerous machine learning methods to generate new bicycle models as well as interpolate between and extrapolate from existing models using Variational Autoencoders. The dataset is available at http://decode.mit.edu/projects/biked/ along with referenced code.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Data-Driven Machine Learning Informed Maneuvering and Control Simulation
    Shan, Hua
    Jiang, Li
    Faller, Will
    Hess, David
    Atsavapranee, Paisan
    Drazen, David
    AIAA AVIATION FORUM AND ASCEND 2024, 2024,
  • [32] Data-Driven Approaches in Antimicrobial Resistance: Machine Learning Solutions
    Sakagianni, Aikaterini
    Koufopoulou, Christina
    Koufopoulos, Petros
    Kalantzi, Sofia
    Theodorakis, Nikolaos
    Nikolaou, Maria
    Paxinou, Evgenia
    Kalles, Dimitris
    Verykios, Vassilios S.
    Myrianthefs, Pavlos
    Feretzakis, Georgios
    ANTIBIOTICS-BASEL, 2024, 13 (11):
  • [33] Prediction of casing damage: A data-driven, machine learning approach
    Zhao Y.
    Jiang H.
    Li H.
    International Journal of Circuits, Systems and Signal Processing, 2020, 14 : 1047 - 1053
  • [34] A DATA-DRIVEN WORKFLOW FOR PREDICTION OF FRACTURING PARAMETERS WITH MACHINE LEARNING
    Zhu, Zhihua
    Hsu, Maoya
    Kun, Ding
    Wang, Tianyu
    He, Xiaodong
    Tian, Shouceng
    THERMAL SCIENCE, 2024, 28 (2A): : 1085 - 1090
  • [35] Data-driven recipe completion using machine learning methods
    De Clercq, Marlies
    Stock, Michiel
    De Baets, Bernard
    Waegeman, Willem
    TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2016, 49 : 1 - 13
  • [36] Data-Driven Computational Neuroscience: Machine Learning and Statistical Models
    Kreinovich, Vladik
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (01) : 2513 - 2514
  • [37] Machine Learning based Psychology: Advocating for A Data-Driven Approach
    Velez, Jorge I.
    INTERNATIONAL JOURNAL OF PSYCHOLOGICAL RESEARCH, 2021, 14 (01): : 6 - 11
  • [38] Clustering suicides: A data-driven, exploratory machine learning approach
    Ludwig, Birgit
    Koenig, Daniel
    Kapusta, Nestor D.
    Blueml, Victor
    Dorffner, Georg
    Vyssoki, Benjamin
    EUROPEAN PSYCHIATRY, 2019, 62 : 15 - 19
  • [39] Data-driven modeling of technology acceptance: A machine learning perspective
    Alwabel, Asim Suleman A.
    Zeng, Xiao-Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [40] Data-Driven Machine Learning for Wind Plant Flow Modeling
    King, R. N.
    Adcock, C.
    Annoni, J.
    Dykes, K.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037