The harmonic index of a graph G is defined as the sum of weights 2di+dj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{2}{d_i+d_j}$$\end{document} over all edges vivj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_iv_j$$\end{document} of G, where di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i$$\end{document} and dj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_j$$\end{document} are the degrees of the vertices vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_i$$\end{document} and vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_j$$\end{document} in G, respectively. In this paper we resolve a conjecture, obtained by the AutoGraphiX system, about the relation between the harmonic index and the algebraic connectivity of graphs.
机构:
East China Normal Univ, Dept Comp Sci & Technol, Shanghai, Peoples R ChinaEast China Normal Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
Xue, Jie
Lin, Huiqiu
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Dept Math, Shanghai, Peoples R ChinaEast China Normal Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
Lin, Huiqiu
Shu, Jinlong
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Dept Comp Sci & Technol, Shanghai, Peoples R ChinaEast China Normal Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
机构:
Univ Sydney, Inst Transport & Logist Studies, Business Sch, Sydney, NSW, AustraliaUniv Sydney, Inst Transport & Logist Studies, Business Sch, Sydney, NSW, Australia
Cheung, Kam-Fung
Bell, Michael G. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Inst Transport & Logist Studies, Business Sch, Sydney, NSW, AustraliaUniv Sydney, Inst Transport & Logist Studies, Business Sch, Sydney, NSW, Australia
机构:
Hunan Normal Univ, Coll Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R China
Deng, Hanyuan
Balachandran, Selvaraj
论文数: 0引用数: 0
h-index: 0
机构:
Univ Free State, Dept Math & Appl Math, Bloemfontein, South Africa
SASTRA Deemed Univ, Sch Arts Sci & Humanities, Dept Math, Thanjavur, IndiaHunan Normal Univ, Coll Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R China
Balachandran, Selvaraj
Elumalai, Suresh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Haifa, Dept Math, Haifa, IsraelHunan Normal Univ, Coll Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R China