On the harmonic index and algebraic connectivity

被引:1
|
作者
Sheikholeslami, S. M. [1 ]
Shooshtari, H. [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Harmonic index; Algebraic connectivity; Vertex connectivity; Edge connectivity; BOUNDS; NUMBER;
D O I
10.1007/s11587-024-00868-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The harmonic index of a graph G is defined as the sum of weights 2di+dj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{2}{d_i+d_j}$$\end{document} over all edges vivj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_iv_j$$\end{document} of G, where di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i$$\end{document} and dj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_j$$\end{document} are the degrees of the vertices vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_i$$\end{document} and vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_j$$\end{document} in G, respectively. In this paper we resolve a conjecture, obtained by the AutoGraphiX system, about the relation between the harmonic index and the algebraic connectivity of graphs.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] The algebraic connectivity of graphs with given circumference
    Xue, Jie
    Lin, Huiqiu
    Shu, Jinlong
    THEORETICAL COMPUTER SCIENCE, 2019, 772 : 123 - 131
  • [42] On the harmonic index and the average eccentricity of graphs
    Zhong, Lingping
    Cui, Qing
    UTILITAS MATHEMATICA, 2017, 103 : 311 - 318
  • [43] Ordering trees with algebraic connectivity and diameter
    Zhang, Xiao-Dong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 427 (2-3) : 301 - 312
  • [44] Optimizing algebraic connectivity by edge rewiring
    Sydney, Ali
    Scoglio, Caterina
    Gruenbacher, Don
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5465 - 5479
  • [45] On algebraic connectivity as a function of an edge weight
    Kirkland, SJ
    Neumann, M
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (01) : 17 - 33
  • [46] On the algebraic connectivity of some token graphs
    Dalfo, C.
    Fiol, M. A.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 60 (01) : 45 - 56
  • [47] Improving connectivity of compromised digital networks via algebraic connectivity maximisation
    Cheung, Kam-Fung
    Bell, Michael G. H.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 294 (01) : 353 - 364
  • [48] Optimal Robust Network Design: Formulations and Algorithms for Maximizing Algebraic Connectivity
    Somisetty, Neelkamal
    Nagarajan, Harsha
    Darbha, Swaroop
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2025, 12 (01): : 918 - 929
  • [49] On atom-bond connectivity index of graphs
    Hua, Hongbo
    Das, Kinkar Chandra
    Wang, Hongzhuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 1099 - 1114
  • [50] Some tight bounds for the harmonic index and the variation of the Randic index of graphs
    Deng, Hanyuan
    Balachandran, Selvaraj
    Elumalai, Suresh
    DISCRETE MATHEMATICS, 2019, 342 (07) : 2060 - 2065