On the harmonic index and algebraic connectivity

被引:1
|
作者
Sheikholeslami, S. M. [1 ]
Shooshtari, H. [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Harmonic index; Algebraic connectivity; Vertex connectivity; Edge connectivity; BOUNDS; NUMBER;
D O I
10.1007/s11587-024-00868-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The harmonic index of a graph G is defined as the sum of weights 2di+dj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{2}{d_i+d_j}$$\end{document} over all edges vivj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_iv_j$$\end{document} of G, where di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i$$\end{document} and dj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_j$$\end{document} are the degrees of the vertices vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_i$$\end{document} and vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_j$$\end{document} in G, respectively. In this paper we resolve a conjecture, obtained by the AutoGraphiX system, about the relation between the harmonic index and the algebraic connectivity of graphs.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Maximizing algebraic connectivity for quasi-c-cyclic graphs
    Lin, Zhen
    Guo, Shu-Guang
    ARS COMBINATORIA, 2019, 146 : 97 - 113
  • [32] The Smallest Values of Algebraic Connectivity for Trees
    Jian Xi LI
    Ji Ming GUO
    Wai Chee SHIU
    Acta Mathematica Sinica,English Series, 2012, (10) : 2021 - 2032
  • [33] Algebraic connectivity of the second power of a graph
    Afshari, B.
    JOURNAL OF GRAPH THEORY, 2023, 104 (02) : 275 - 281
  • [34] The smallest values of algebraic connectivity for trees
    Jian Xi Li
    Ji Ming Guo
    Wai Chee Shiu
    Acta Mathematica Sinica, English Series, 2012, 28 : 2021 - 2032
  • [35] Algebraic connectivity ratio of Ramanujan graphs
    Olfati-Saber, Reza
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 687 - 692
  • [36] Algebraic connectivity of an even uniform hypergraph
    Hu, Shenglong
    Qi, Liqun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (04) : 564 - 579
  • [37] Algebraic connectivity of an even uniform hypergraph
    Shenglong Hu
    Liqun Qi
    Journal of Combinatorial Optimization, 2012, 24 : 564 - 579
  • [38] The algebraic connectivity of graphs under perturbation
    Guo, Ji-Ming
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (06) : 1148 - 1153
  • [39] Algebraic connectivity and degree sequences of trees
    Biyikoglu, Tuerker
    Leydold, Josef
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (2-3) : 811 - 817
  • [40] The smallest values of algebraic connectivity for trees
    Li, Jian Xi
    Guo, Ji Ming
    Shiu, Wai Chee
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (10) : 2021 - 2032