On the harmonic index and algebraic connectivity

被引:1
|
作者
Sheikholeslami, S. M. [1 ]
Shooshtari, H. [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Harmonic index; Algebraic connectivity; Vertex connectivity; Edge connectivity; BOUNDS; NUMBER;
D O I
10.1007/s11587-024-00868-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The harmonic index of a graph G is defined as the sum of weights 2di+dj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{2}{d_i+d_j}$$\end{document} over all edges vivj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_iv_j$$\end{document} of G, where di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i$$\end{document} and dj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_j$$\end{document} are the degrees of the vertices vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_i$$\end{document} and vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_j$$\end{document} in G, respectively. In this paper we resolve a conjecture, obtained by the AutoGraphiX system, about the relation between the harmonic index and the algebraic connectivity of graphs.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] ON TREES WITH MAXIMUM ALGEBRAIC CONNECTIVITY
    Abreu, Nair
    Markenzon, Lilian
    Lee, Luciana
    Rojo, Oscar
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (01) : 88 - 101
  • [22] Ordering trees by algebraic connectivity
    Wang, Xing-Ke
    Tan, Shang-Wang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3684 - 3691
  • [23] ALGEBRAIC CONNECTIVITY FOR SUBCLASSES OF CATERPILLARS
    Abreu, Nair
    Rojo, Oscar
    Justel, Claudia
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2010, 4 (01) : 181 - 196
  • [24] Some Properties of Algebraic Connectivity
    Liu, Muhuo
    Zhang, Guangliang
    Das, Kinkar Chandra
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2020, 43 (06): : 537 - 542
  • [25] The algebraic connectivity of lollipop graphs
    Guo, Ji-Ming
    Shiu, Wai Chee
    Li, Jianxi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (10) : 2204 - 2210
  • [26] The Algebraic Connectivity of Circulant Graphs
    Zhou, Houqing
    2012 2ND INTERNATIONAL CONFERENCE ON APPLIED ROBOTICS FOR THE POWER INDUSTRY (CARPI), 2012, : 831 - 834
  • [27] Some Properties of Algebraic Connectivity
    Muhuo Liu
    Guangliang Zhang
    Kinkar Chandra Das
    National Academy Science Letters, 2020, 43 : 537 - 542
  • [28] Harmonic index of a line graph
    Wang, Tao
    Wu, Baoyindureng
    Wang, Taishan
    DISCRETE APPLIED MATHEMATICS, 2023, 325 : 284 - 296
  • [29] The Harmonic Index of Some Graphs
    Li, Jianxi
    Lv, Jian-Bo
    Liu, Yang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S331 - S340
  • [30] Remarks on harmonic index of graphs
    Liu, Jingzhong
    Zhang, Qianhong
    UTILITAS MATHEMATICA, 2012, 88 : 281 - 285