Remaining useful life prediction method of rolling bearings based on improved 3σ and DBO-HKELM

被引:1
|
作者
Gao, Shuzhi [1 ]
Li, Zeqin [1 ,2 ]
Zhang, Yimin [1 ]
Zhang, Sixuan [1 ,3 ]
Zhou, Jin [1 ,3 ]
机构
[1] Shenyang Univ Chem Technol, Equipment Reliabil Inst, Shenyang 110142, Peoples R China
[2] Shenyang Univ Chem Technol, Coll Mech & Power Engn, Shenyang 110142, Peoples R China
[3] Shenyang Univ Chem Technol, Coll Informat Engn, Shenyang 110142, Peoples R China
基金
中国国家自然科学基金;
关键词
rolling bearing; remaining useful life; improved kernel principal component analysis; improved; 3; sigma; dung beetle optimization algorithm; hybrid kernel extreme learning machine;
D O I
10.1088/1361-6501/ad52b5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An improved 3 sigma method and dung beetle algorithm optimization hybrid kernel extreme learning machine-based (DBO-HKELM) approach for predicting the remaining useful life (RUL) of rolling bearings was suggested in order to increase prediction accuracy. Firstly, multi-dimensional degradation feature data is extracted from bearing vibration data. Considering the influence of noise signal on the prediction accuracy, an improved kernel principal component analysis method is proposed to reduce the noise of degraded features. Then, an improved 3 sigma method is proposed to determine the starting point of bearing degradation by combining bearing vibration signal data. Lastly, a DBO-HKELM life prediction model was put forth. The parameters of hybrid kernel extreme learning machine were optimized by dung beetle algorithm, and appropriate kernel parameters and regularization coefficient were selected. The feature set of degradation indicators is input into the trained model to output the bearing RUL prediction results starting from the determined degradation starting point. Multiple data sets were used to verify that the new RUL prediction method significantly improves the prediction accuracy.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Early Prediction of Remaining Useful Life for Rolling Bearings Based on Envelope Spectral Indicator and Bayesian Filter
    Wen, Haobin
    Zhang, Long
    Sinha, Jyoti K.
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [42] An improved deep convolution neural network for predicting the remaining useful life of rolling bearings
    Guo, Yiming
    Zhang, Hui
    Xia, Zhijie
    Dong, Chang
    Zhang, Zhisheng
    Zhou, Yifan
    Sun, Han
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (03) : 5743 - 5751
  • [43] Remaining useful life prediction for rolling bearings based on similarity feature fusion and convolutional neural network
    Nie, Lei
    Zhang, Lvfan
    Xu, Shiyi
    Cai, Wentao
    Yang, Haoming
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (08)
  • [44] Remaining Useful Life Prediction of Rolling Element Bearings Using Supervised Machine Learning
    Li, Xiaochuan
    Elasha, Faris
    Shanbr, Suliman
    Mba, David
    ENERGIES, 2019, 12 (14)
  • [45] A Novel Competitive Temporal Convolutional Network for Remaining Useful Life Prediction of Rolling Bearings
    Wang, Wei
    Zhou, Gongbo
    Ma, Guoqing
    Yan, Xiaodong
    Zhou, Ping
    He, Zhenzhi
    Ma, Tianbing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [46] A Remaining Useful Life Prediction Method for Rolling Bearing Based on TCN-Transformer
    Cao, Wei
    Meng, Zong
    Li, Jimeng
    Wu, Jie
    Fan, Fengjie
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [47] Remaining Life Prediction of Rolling Bearings Based on Digital Twin and Informer
    Cui, Haifeng
    Wang, Yajun
    Ju, Hongyu
    Liu, Yunsong
    2024 9TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS, ACIRS, 2024, : 78 - 82
  • [48] Remaining Life Prediction of Bearings Based on Improved IF-SCINet
    Zhang, Jing
    Zhang, Chao
    Xu, Shuai
    Liu, Guiyi
    Fei, Hongbo
    Wu, Le
    IEEE ACCESS, 2024, 12 : 19598 - 19611
  • [49] Prediction of the remaining useful life of rolling bearings by LSTM based on multidomain characteristics and a dual-attention mechanism
    Bao, Huaiqian
    Song, Lijin
    Zhang, Zongzhen
    Han, Baokun
    Wang, Jinrui
    Ma, Junqing
    Jiang, Xingwang
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2023, 37 (09) : 4583 - 4596
  • [50] Prediction of the remaining useful life of rolling bearings by LSTM based on multidomain characteristics and a dual-attention mechanism
    Huaiqian Bao
    Lijin Song
    Zongzhen Zhang
    Baokun Han
    Jinrui Wang
    Junqing Ma
    Xingwang Jiang
    Journal of Mechanical Science and Technology, 2023, 37 : 4583 - 4596