Positively ep-expansive dynamical systems

被引:0
|
作者
Fedeli, Alessandro [1 ]
机构
[1] Univ Laquila, Dipartimento Ingn & Sci Informaz & Matemat, I-67100 Laquila, Italy
关键词
Dynamical system; Dense set; (Positive) expansiveness; Eventually periodic point; Minimal; Sensitive; HOMEOMORPHISMS; MAPPINGS;
D O I
10.1016/j.topol.2024.108880
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the basic properties of those dynamical systems which are positively expansive on a dense set containing all eventually periodic points and show how the dynamical behavior of these systems fits within the theoretical framework of usual (positive) expansiveness. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Bianchi Cosmologies as Dynamical Systems
    Andrzej J. Maciejewski
    Marek Szydłowski
    Celestial Mechanics and Dynamical Astronomy, 1999, 73 : 17 - 24
  • [22] Approximate dynamical systems on interval
    Chudziak, J.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 532 - 537
  • [23] Lightly chaotic dynamical systems
    Miranda, Annamaria
    APPLIED GENERAL TOPOLOGY, 2024, 25 (02): : 277 - 289
  • [24] Computational modeling of dynamical systems
    Jansson, J
    Johnson, C
    Logg, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (03): : 471 - 481
  • [25] Logical entropy of dynamical systems
    Dagmar Markechová
    Abolfazl Ebrahimzadeh
    Zahra Eslami Giski
    Advances in Difference Equations, 2018
  • [26] CONSERVATIVE METHODS FOR DYNAMICAL SYSTEMS
    Wan, Andy T. S.
    Bihlo, Alexander
    Nave, Jean-Christophe
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (05) : 2255 - 2285
  • [27] Generic observation of dynamical systems
    Yazdani, Esfandiar Nava
    DOCUMENTA MATHEMATICA, 2007, 12 : 505 - 520
  • [28] Impulsive surfaces on dynamical systems
    E. M. Bonotto
    M. C. Bortolan
    T. Caraballo
    R. Collegari
    Acta Mathematica Hungarica, 2016, 150 : 209 - 216
  • [29] Dynamical probabilistic P systems
    Pescini, D
    Besozzi, D
    Mauri, G
    Zandron, C
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2006, 17 (01) : 183 - 204
  • [30] ON THE FIBONACCIC OMPLEX DYNAMICAL SYSTEMS
    El Abdalaoui, El Houcein
    Bonnot, Sylvain
    Messaoudi, Ali
    Sester, Olivier
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (05) : 2449 - 2471