Efficient Identification of Jiles-Atherton Model Parameters Using Space-Filling Designs and Genetic Algorithms

被引:5
|
作者
Khemani, Varun [1 ]
Azarian, Michael H. [1 ]
Pecht, Michael G. [1 ]
机构
[1] Univ Maryland, Ctr Adv Life Cycle Engn CALCE, College Pk, MD 20740 USA
来源
ENG | 2022年 / 3卷 / 03期
关键词
genetic algorithm; Jiles-Atherton model; space-filling design; SEARCH ALGORITHM; HYSTERESIS;
D O I
10.3390/eng3030026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Jiles-Atherton model is widespread in the hysteresis description of ferromagnetic, ferroelectric, magneto strictive, and piezoelectric materials. However, the determination of model parameters is not straightforward because the model involves numerical integration and the solving of ordinary differential equations, both of which are error prone. As a result, stochastic optimization techniques have been used to explore the vast ranges of these parameters in an effort to identify the parameter values that minimize the error differential between experimental and modelled hysteresis curves. Because of the time-consuming nature of these optimization techniques, this paper explores the design space of the parameters using a space-filling design. This design provides a narrower range of parameters to look at with optimization algorithms, thereby reducing the time required to identify the optimal Jiles-Atherton model parameters. This procedure can also be carried out without using expensive hysteresis measurement devices, provided the desired transformer's secondary voltage is known.
引用
收藏
页码:364 / 372
页数:9
相关论文
共 50 条
  • [31] Accurate Hysteresis Loops Calculation Under the Frequency Effect Using the Inverse Jiles-Atherton Model
    Belgasmi, Ibtissem
    Hamimid, Mourad
    ADVANCED ELECTROMAGNETICS, 2020, 9 (02) : 93 - 98
  • [32] Study on Transient and Frequency Response of Current Transformer Using Jiles-Atherton Model
    Zhang, Daming
    Chen, J. C.
    Phung, T.
    2013 IEEE TENCON SPRING CONFERENCE, 2013, : 257 - 261
  • [33] A Circuit-Based Formulation for Soft Magnetic Materials Using the Jiles-Atherton Model
    Kanakgiri, Krishna
    Bhardwaj, Dhruv Ishan
    Ram, Boggavarapu Sai
    Kulkarni, Shrikrishna V.
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (10)
  • [34] State Space Representation of Jiles-Atherton Hysteresis Model and Application for Closed-Loop Control
    Zhao, Jiye
    Zhou, Jiqiang
    Zhang, Lu
    Sun, Jinji
    MATERIALS, 2024, 17 (15)
  • [35] An Easily Used Phenomenological Magnetization Model and Its Empirical Expressions Based on Jiles-Atherton Parameters
    Xue, Guangming
    Bai, Hongbai
    Li, Tuo
    Lu, Chunhong
    MATERIALS, 2022, 15 (21)
  • [36] Distinguishing Internal Winding Faults From Inrush Currents in Power Transformers Using Jiles-Atherton Model Parameters Based on Correlation Coefficient
    Huang, Sy-Ruen
    Chen, Hong-Tai
    Wu, Chueh-Cheng
    Guan, Chau-Yu
    Cheng, Chiang
    IEEE TRANSACTIONS ON POWER DELIVERY, 2012, 27 (02) : 548 - 553
  • [37] Modelling the Influence of Stresses on Magnetic Characteristics of the Elements of the Truss Using Extended Jiles-Atherton Model
    Jackiewicz, D.
    Szewczyk, R.
    Kachniarz, M.
    Biedrzycki, R.
    ACTA PHYSICA POLONICA A, 2017, 131 (04) : 1189 - 1192
  • [38] Performance Analysis of SISFCL with the Variation of Circuit Parameters using Jiles Atherton Hysteresis Model
    Sarkar, Debraj
    Roy, Debabrata
    Choudhury, Amalendu Bikash
    Yamada, Sotoshi
    INTERNATIONAL JOURNAL OF EMERGING ELECTRIC POWER SYSTEMS, 2016, 17 (04): : 393 - 400
  • [39] Parameter identification of jiles-atherton model for transformer based on hybrid artificial fish swarm and shuffled frog leaping algorithm
    Geng, Chao
    Wang, Fenghua
    Su, Lei
    Zhang, Jun
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2015, 35 (18): : 4799 - 4807
  • [40] Double-Frequency Method Using Differential Evolution for Identifying Parameters in the Dynamic Jiles-Atherton Model of Mn-Zn Ferrites
    Zhang, Daming
    Fletcher, John E.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2013, 62 (02) : 460 - 466