Imbalanced deep transfer network for fault diagnosis of high-speed train traction motor bearings

被引:4
|
作者
Liu, Yilong [1 ,2 ]
Li, Xinyuan [1 ,2 ]
Zhang, Xingwu [1 ,2 ]
Fan, Lutong [1 ,2 ]
Chen, Xuefeng [1 ,2 ]
Gong, Baogui [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Natl & Local Joint Engn Res Ctr Equipment Operat S, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Traction motor bearing; Fault diagnosis; Feature shift; Label shift; Imbalanced unsupervised domain adaptation; DISTRIBUTIONS;
D O I
10.1016/j.knosys.2024.111682
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Transfer learning-based fault diagnosis methods have been increasingly utilized for major equipment, including high-speed trains, turbine machines, and aircraft engines. However, most traditional transfer methods based on implicitly balanced data only consider feature shift. When applied to high-speed train traction motor bearing fault diagnosis, the cross-domain generalization ability of these transfer methods is weakened by label shift. Due to the complex operating conditions of high-speed trains, these transfer methods often fail under multiple operating conditions, resulting in reduced cross-domain diagnostic accuracy when faced with feature shift and label shift simultaneously. Therefore, we propose the imbalanced deep transfer network (IDTN) to tackle the aforementioned problem in cross-domain fault diagnosis of high-speed train traction motor bearings. Firstly, IDTN overcomes the influence of imbalanced distributions in source domain samples through deep imbalanced learning. Then, batch nuclear-norm maximization is introduced to enhance the prediction discriminability and diversity of the target domain samples. Finally, case studies of the high-speed train traction motor bearing fault dataset and the Case Western Reserve University bearing fault dataset are conducted. Experimental results prove the effectiveness and superiority of IDTN in the cross-domain fault diagnosis field with both feature shift and label shift.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A Platform for Fault Diagnosis of High-Speed Train based on Big Data
    Xu, Quan
    Zhang, Peng
    Liu, Wenqin
    Liu, Qiang
    Liu, Changxin
    Wang, Liangyong
    Toprac, Anthony
    Qin, S. Joe
    IFAC PAPERSONLINE, 2018, 51 (18): : 309 - 314
  • [22] A Review of Fault Diagnosis Methods for Key Systems of the High-Speed Train
    Xie, Suchao
    Tan, Hongchuang
    Yang, Chengxing
    Yan, Hongyu
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [23] High speed train bearings fault diagnosis of iteration symplectic geometry mode decomposition
    Lin S.
    Jin H.
    Wang Y.-C.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (06): : 1324 - 1331
  • [24] A clustered blueprint separable convolutional neural network with high precision for high-speed train bogie fault diagnosis
    Jia, Xinming
    Qin, Na
    Huang, Deqing
    Zhang, Yiming
    Du, Jiahao
    NEUROCOMPUTING, 2022, 500 : 422 - 433
  • [25] Significance Support Vector Machine for High-Speed Train Bearing Fault Diagnosis
    Sun, Bing
    Liu, Xiaofeng
    IEEE SENSORS JOURNAL, 2023, 23 (05) : 4638 - 4646
  • [26] Fault Diagnosis of High-Speed Train Bogie by Residual-Squeeze Net
    Su, Liyuan
    Ma, Lei
    Qin, Na
    Huang, Deqing
    Kemp, Andrew H.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (07) : 3856 - 3863
  • [27] Cross-domain transfer fault diagnosis by class-imbalanced deep subdomain adaptive network
    Zhou, Jianyu
    Zhang, Xiangfeng
    Jiang, Hong
    Li, Jun
    Shao, Zhenfa
    MEASUREMENT, 2025, 242
  • [28] High-Accuracy and Adaptive Fault Diagnosis of High-Speed Train Bogie Using Dense-Squeeze Network
    Zhang, Yiming
    Qin, Na
    Huang, Deqing
    Wu, Bi
    Liu, Ziyi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (03) : 2501 - 2510
  • [29] Research on High-Speed Train Bearing Fault Diagnosis Method Based on Domain-Adversarial Transfer Learning
    Zou, Yingyong
    Zhao, Wenzhuo
    Liu, Tao
    Zhang, Xingkui
    Shi, Yaochen
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [30] Stepwise Adaptive Convolutional Network for Fault Diagnosis of High-Speed Train Bogie Under Variant Running Speeds
    Qin, Na
    Wu, Bi
    Huang, Deqing
    Zhang, Yiming
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (12) : 8389 - 8398