The m6A methyltransferase METTL14 promotes cell proliferation via SETBP1-mediated activation of PI3K-AKT signaling pathway in myelodysplastic neoplasms

被引:2
|
作者
Jiang, Lingxu [1 ,2 ,3 ]
Zhang, Yudi [1 ,2 ,3 ]
Qian, Jiejing [1 ,2 ,3 ]
Zhou, Xinping [1 ,2 ,3 ]
Ma, Liya [1 ,2 ,3 ]
Zhu, Shuanghong [1 ,2 ,3 ]
Wang, Lu [1 ,2 ,3 ]
Wang, Wei [1 ,2 ,3 ]
Yang, Wenli [1 ,2 ,3 ]
Luo, Yingwan [1 ,2 ,3 ]
Lang, Wei [1 ,2 ,3 ]
Xu, Gaixiang [1 ,2 ,3 ]
Ren, Yanling [1 ,2 ,3 ]
Mei, Chen [1 ,2 ,3 ]
Ye, Li [1 ,2 ,3 ]
Zhang, Qi [1 ,2 ,3 ]
Liu, Xiaozhen [1 ,2 ,3 ]
Jin, Jie [1 ,3 ]
Sun, Jie [1 ,3 ]
Tong, Hongyan [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Univ, Sch Med, Affiliated Hosp 1, Dept Hematol, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Med, Affiliated Hosp 1, Myelodysplast Syndromes Diag & Therapy Ctr, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Univ, Zhejiang Prov Key Lab Hematopoiet Malignancy, Hangzhou, Zhejiang, Peoples R China
[4] Zhejiang Univ, Canc Ctr, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
CHRONIC MYELOMONOCYTIC LEUKEMIA; CONVENTIONAL CARE REGIMENS; HEPATOCELLULAR-CARCINOMA; MYELOID-LEUKEMIA; ELDERLY-PATIENTS; STEM-CELLS; AZACITIDINE; SETBP1; DECITABINE; DIFFERENTIATION;
D O I
10.1038/s41375-024-02350-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
N6-methyladenosine (m(6)A) is the most prevalent epitranscriptomic modification in mammalian mRNA. Recent studies have revealed m(6)A is involved in the pathogenesis of various malignant tumors including hematologic neoplasms. Nevertheless, the specific roles of m(6)A modification and m(6)A regulators in myelodysplastic neoplasms (MDS) remain poorly understood. Herein, we demonstrated that m(6)A level and the expression of m(6)A methyltransferase METTL14 were elevated in MDS patients with bone marrow blasts >= 5%. Additionally, m(6)A level and METTL14 expression were upregulated as the disease risk increased and significantly associated with adverse clinical outcomes. Knockdown of METTL14 inhibited cell proliferation and colony formation ability of MDS cells. Moreover, in vivo experiments showed METTL14 knockdown remarkably reduced tumor burden and prolonged the survival of mice. Mechanistically, METTL14 facilitated the m(6)A modification of SETBP1 mRNA by formation of METTL3-METTL14 complex, leading to increased stabilization of SETBP1 mRNA and subsequent activation of the PI3K-AKT signaling pathway. Overall, this study elucidated the involvement of the METTL14/m(6)A/SETBP1/PI3K-AKT signaling axis in MDS, highlighting the therapeutic potential of targeting METTL3-METTL14 complex-mediated m(6)A modification for MDS therapy.
引用
收藏
页码:2246 / 2258
页数:13
相关论文
共 50 条
  • [1] The M6A Methyltransferase METTL14 Promotes Myelodysplastic Syndromes Development Via PI3K/Akt Signaling Pathway
    Jiang, Lingxu
    Zhou, Xinping
    Hu, Chao
    Mei, Chen
    Xu, Gaixiang
    Ma, Liya
    Ren, Yanling
    Ye, Li
    Wang, Lu
    Luo, Yingwan
    Jin, Jie
    Sun, Jie
    Tong, Hongyan
    BLOOD, 2022, 140 : 6894 - 6895
  • [2] The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway
    Liu, Xin
    Xiao, Mingyang
    Zhang, Liang
    Li, Liuli
    Zhu, Guolian
    Shen, Erdong
    Lv, Mingyue
    Lu, Xiaobo
    Sun, Zhe
    JOURNAL OF CLINICAL LABORATORY ANALYSIS, 2021, 35 (03)
  • [3] m6A methyltransferase METTL3 promotes retinoblastoma progression via PI3K/AKT/mTOR pathway
    Zhang, Han
    Zhang, Ping
    Long, Chongde
    Ma, Xinqi
    Huang, Hao
    Kuang, Xielan
    Du, Han
    Tang, Han
    Ling, Xiangtian
    Ning, Jie
    Liu, Huijun
    Deng, Xizhi
    Zou, Yuxiu
    Wang, Renchun
    Cheng, Hao
    Lin, Shuibin
    Zhang, Qingjiong
    Yan, Jianhua
    Shen, Huangxuan
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2020, 24 (21) : 12368 - 12378
  • [4] Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion
    Shulkla, Sanjeev
    MacLennan, Gregory T.
    Hartman, Douglas J.
    Fu, Pingfu
    Resnick, Martin I.
    Gupta, Sanjay
    INTERNATIONAL JOURNAL OF CANCER, 2007, 121 (07) : 1424 - 1432
  • [5] BCAT1 promotes cell proliferation, migration, and invasion via the PI3K-Akt signaling pathway in oral squamous cell carcinoma
    Yuan, Zhenying
    Li, Ming
    Tang, Zhangui
    ORAL DISEASES, 2024,
  • [6] LncRNA MALAT1 Promotes Cancer Metastasis in Osteosarcoma via Activation of the PI3K-Akt Signaling Pathway
    Chen, Yong
    Huang, Wending
    Sun, Wei
    Zheng, Biqiang
    Wang, Chunmeng
    Luo, Zhiguo
    Wang, Jian
    Yan, Wangjun
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 51 (03) : 1313 - 1326
  • [7] METTL3-mediated m6A methylation of TRAF5 inhibits lung adenocarcinoma cell metastasis via activation of the PI3K/AKT/NF-κB signaling pathway
    Zhou, Yu-Fei
    Li, Jiang-Tao
    Zheng, Qing-Lin
    Ren, Kun-Lun
    Yi, Cheng-Cheng
    KAOHSIUNG JOURNAL OF MEDICAL SCIENCES, 2024, 40 (02): : 150 - 160
  • [8] The m6A RNA methyltransferase METTL3/METTL14 promotes leukemogenesis through the mdm2/p53 pathway in acute myeloid leukemia
    Sang, Lina
    Wu, Xia
    Yan, Tianyou
    Naren, Duolan
    Liu, Xiaoyan
    Zheng, Xue
    Zhang, Nanchen
    Wang, Huifang
    Li, Yarong
    Gong, Yuping
    JOURNAL OF CANCER, 2022, 13 (03): : 1019 - 1030
  • [9] METTL14 Inhibits Hepatocellular Carcinoma Metastasis Through Regulating EGFR/PI3K/AKT Signaling Pathway in an m6A-Dependent Manner
    Shi, Yuntao
    Zhuang, Yingying
    Zhang, Jialing
    Chen, Mengxue
    Wu, Shangnong
    CANCER MANAGEMENT AND RESEARCH, 2020, 12 : 13173 - 13184
  • [10] Overproduced CPSF4 Promotes Cell Proliferation and Invasion via PI3K-AKT Signaling Pathway in Oral Squamous Cell Carcinoma
    Zhang, Mingjie
    Lin, Han
    Ge, Xiaohan
    Xu, Yue
    JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2021, 79 (05) : 1177.e1 - 1177.e14