Terahertz ratchet in graphene two-dimensional metamaterial formed by a patterned gate with an antidot array

被引:4
作者
Yahniuk, I. [1 ,2 ]
Hild, M. [1 ]
Golub, L. E. [1 ]
Amann, J. [1 ]
Eroms, J. [1 ]
Weiss, D. [1 ]
Kang, Wun-Hao [3 ,4 ]
Liu, Ming-Hao [3 ,4 ]
Watanabe, K. [5 ]
Taniguchi, T. [6 ]
Ganichev, S. D. [1 ,2 ]
机构
[1] Univ Regensburg, Terahertz Ctr, D-93040 Regensburg, Germany
[2] PAS, Inst High Pressure Phys, CENTERA Labs, PL-01142 Warsaw, Poland
[3] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan
[4] Natl Cheng Kung Univ, Ctr Quantum Frontiers Res & Technol QFort, Tainan 70101, Taiwan
[5] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, 1-1 Namiki, Tsukuba 3050044, Japan
[6] Natl Inst Mat Sci, Res Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba 3050044, Japan
基金
欧洲研究理事会;
关键词
BROWNIAN MOTORS; RADIATION; TRANSPORT; RECTIFICATION;
D O I
10.1103/PhysRevB.109.235428
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the observation of the terahertz-induced ratchet effect in graphene-based two-dimensional (2D) metamaterials. The metamaterial consists of a graphite gate patterned with an array of triangular antidots placed under a graphene monolayer. We show that the ratchet current appears due to the noncentrosymmetry of the periodic structure unit cell. The ratchet current is generated owing to the combined action of a spatially periodic in-plane electrostatic potential and a periodically modulated radiation electric field caused by near-field diffraction. The magnitude and direction of the ratchet current are shown to be controlled by voltages applied to both back and patterned gates, which change the lateral asymmetry, carrier type, and density. The phenomenological and microscopic theories of ratchet effects in graphene-based 2D metamaterials are developed. The experimental data are discussed in the light of the theory based on the solution of the Boltzmann kinetic equation and the calculated electrostatic potential profile. The theory describes well all the experimental results and shows that the observed ratchet current consists of the Seebeck thermoratchet contribution as well as the linear ratchet one, which is sensitive to the orientation of the radiation electric field vector with respect to the triangles.
引用
收藏
页数:14
相关论文
共 70 条
[1]  
[Anonymous], Note that for circularly (elliptically) polarized radiation an additional circular ratchet current proportional to the radiation helicity can be generated
[2]   Quantum transport in Rashba spin-orbit materials: a review [J].
Bercioux, Dario ;
Lucignano, Procolo .
REPORTS ON PROGRESS IN PHYSICS, 2015, 78 (10)
[3]   Microwave based nanogenerator using the ratchet effect in Si/SiGe heterostructures [J].
Bisotto, I. ;
Kannan, E. S. ;
Sassine, S. ;
Murali, R. ;
Beck, T. J. ;
Jalabert, L. ;
Portal, J-C .
NANOTECHNOLOGY, 2011, 22 (24)
[4]   Current-driven detection of terahertz radiation using a dual-grating-gate plasmonic detector [J].
Boubanga-Tombet, S. ;
Tanimoto, Y. ;
Satou, A. ;
Suemitsu, T. ;
Wang, Y. ;
Minamide, H. ;
Ito, H. ;
Fateev, D. V. ;
Popov, V. V. ;
Otsuji, T. .
APPLIED PHYSICS LETTERS, 2014, 104 (26)
[5]   Room-Temperature Amplification of Terahertz Radiation by Grating-Gate Graphene Structures [J].
Boubanga-Tombet, Stephane ;
Knap, Wojciech ;
Yadav, Deepika ;
Satou, Akira ;
But, Dmytro B. ;
Popov, Vyacheslav V. ;
Gorbenko, Ilya V. ;
Kachorovskii, Valentin ;
Otsuji, Taiichi .
PHYSICAL REVIEW X, 2020, 10 (03)
[6]   Magnetic Ratchet Effects in a Two-Dimensional Electron Gas [J].
Budkin, G. V. ;
Golub, L. E. ;
Ivchenko, E. L. ;
Ganichev, S. D. .
JETP LETTERS, 2016, 104 (09) :649-656
[7]   Orbital magnetic ratchet effect [J].
Budkin, G. V. ;
Golub, L. E. .
PHYSICAL REVIEW B, 2014, 90 (12)
[8]  
Cai X, 2014, NAT NANOTECHNOL, V9, P814, DOI [10.1038/nnano.2014.182, 10.1038/NNANO.2014.182]
[9]   Edge photocurrent driven by terahertz electric field in bilayer graphene [J].
Candussio, S. ;
Durnev, M., V ;
Tarasenko, S. A. ;
Yin, J. ;
Keil, J. ;
Yang, Y. ;
Son, S-K ;
Mishchenko, A. ;
Plank, H. ;
Bel'kov, V. V. ;
Slizovskiy, S. ;
Fal'ko, V ;
Ganichev, S. D. .
PHYSICAL REVIEW B, 2020, 102 (04)
[10]   Ratchet transport of interacting particles [J].
Chepelianskii, A. D. ;
Entin, M. V. ;
Magarill, L. I. ;
Shepelyansky, D. L. .
PHYSICAL REVIEW E, 2008, 78 (04)