Seismic Data Denoising Using a New Framework of FABEMD-Based Dictionary Learning

被引:1
|
作者
Wang, Weiqi [1 ]
Yang, Jidong [1 ]
Li, Zhenchun [1 ]
Huang, Jianping [1 ]
Zhao, Chong [1 ]
机构
[1] China Univ Petr East China, Sch Geosci, Natl Key Lab Deep Oil & Gas, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Fast adaptive empirical mode decomposition (FABEMD); seismic data denoising; sequential generalization K-means dictionary learning (DL); EMPIRICAL-MODE DECOMPOSITION; RANDOM NOISE ATTENUATION;
D O I
10.1109/TGRS.2024.3396459
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Land seismic data are often obscured by noise, severely affecting the accuracy of subsequent seismic imaging and interpretation. Dictionary learning (DL) is an effective method for noise suppression. However, finding a fast DL method that is suitable for weak signals and can suppress multiscale strong noise is still a hot topic. In this article, we introduce a noise suppression method that combines DL with fast adaptive empirical mode decomposition (FABEMD). We leverage the advantages of FABEMD in multiscale signal decomposition, along with the efficient sparse representation capabilities of DL, to achieve noise suppression for low signal-to-noise ratio (LSNR) seismic signals. We group bidimensional intrinsic mode functions (IMFs) based on their cross correlation coefficients and train dictionaries for components using the sequential generalization K-means method, enhancing computational efficiency and adaptability. Numerical examples using both synthetic and field data validate the practicality and versatility of the proposed method, indicating its improved performance in denoising compared to f - x EMD, BEMD, and traditional DL methods.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [41] Seismic data denoising based on learning-type overcomplete dictionaries
    Tang Gang
    Ma Jian-Wei
    Yang Hui-Zhu
    APPLIED GEOPHYSICS, 2012, 9 (01) : 27 - 32
  • [42] Seismic data denoising based on learning-type overcomplete dictionaries
    Gang Tang
    Jian-Wei Ma
    Hui-Zhu Yang
    Applied Geophysics, 2012, 9 : 27 - 32
  • [43] Learning From Noisy Data: An Unsupervised Random Denoising Method for Seismic Data Using Model-Based Deep Learning
    Wang, Feng
    Yang, Bo
    Wang, Yuqing
    Wang, Ming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] A dictionary learning method for seismic data compression
    Zizi M.O.F.
    Turquais P.
    Geophysics, 2021, 87 (02) : 1 - 83
  • [45] A dictionary learning method for seismic data compression
    Zizi, Mohammed Outhmane Faouzi
    Turquais, Pierre
    GEOPHYSICS, 2022, 87 (02) : V101 - V116
  • [46] Unsupervised Seismic Data Denoising Using Diffusion Denoising Model
    Sun, Fuyao
    Lin, Hongbo
    Li, Yue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [47] A model-based data-driven dictionary learning for seismic data representation
    Yarman, Can Evren
    Kumar, Rajiv
    Rickett, James
    GEOPHYSICAL PROSPECTING, 2018, 66 (01) : 98 - 123
  • [48] Seismic Data Denoising Using a Self-Supervised Deep Learning Network
    Wang, Detao
    Chen, Guoxiong
    Chen, Jianwei
    Cheng, Qiuming
    MATHEMATICAL GEOSCIENCES, 2024, 56 (03) : 487 - 510
  • [49] Seismic Data Denoising Using a Self-Supervised Deep Learning Network
    Detao Wang
    Guoxiong Chen
    Jianwei Chen
    Qiuming Cheng
    Mathematical Geosciences, 2024, 56 : 487 - 510
  • [50] Seismic data recovery using deep targeted denoising priors in an alternating optimization framework
    Lan, Nanying
    Zhang, Fanchang
    GEOPHYSICS, 2022, 87 (04) : V279 - V291