Long time existence of the non-isentropic slightly compressible Navier-Stokes equations with boundary conditions

被引:0
作者
Ju, Qiangchang [1 ,2 ]
Xu, Jianjun [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Natl Key Lab Computat Phys, Beijing 100088, Peoples R China
关键词
full compressible Navier-Stokes equations; long time existence; initial boundary value problem; smooth solution; Mach number; MACH NUMBER LIMIT; INCOMPRESSIBLE LIMIT; CLASSICAL-SOLUTIONS; SINGULAR LIMITS; STABILITY; SYSTEMS; VACUUM; MOTION; FLUIDS; FLOWS;
D O I
10.1088/1361-6544/ad46bf
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the long time existence of smooth solutions to the initial boundary value problem for the non-isentropic slightly compressible Navier-Stokes equations with slip or non-slip boundary conditions on the velocity. We verify that the compressible Navier-Stokes equations with boundary conditions admit a unique smooth solution on the time interval where the smooth solution of the incompressible Navier-Stokes equations exists, when the Mach number is sufficiently small. Moreover, we obtain the uniform convergence of smooth solutions for the compressible system toward those for the corresponding incompressible system on that time interval.
引用
收藏
页数:42
相关论文
共 48 条
[1]   Stokes and Navier-Stokes equations with Navier boundary conditions [J].
Acevedo Tapia, P. ;
Amrouche, C. ;
Conca, C. ;
Ghosh, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 :258-320
[2]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[3]   STOKES AND NAVIER-STOKES PROBLEMS WITH NAVIER-TYPE BOUNDARY CONDITION IN LP-SPACES [J].
Al Baba, Hind ;
Amrouche, Cherif .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2019, 11 (02) :203-226
[4]   Low mach number limit of the full Navier-Stokes equations [J].
Alazard, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :1-73
[5]  
Aramaki J., 2014, Int. J. Math. Anal. (Ruse), V8, P259
[6]   Low Mach number limit of viscous polytropic flows: Formal asymptotics in the periodic case [J].
Bresch, D ;
Desjardins, B ;
Grenier, E ;
Lin, CK .
STUDIES IN APPLIED MATHEMATICS, 2002, 109 (02) :125-149
[7]  
Cai GC, 2021, Arxiv, DOI arXiv:2102.06348
[8]   Existence results for viscous polytropic fluids with vacuum [J].
Cho, Yonggeun ;
Kim, Hyunseok .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (02) :377-411
[9]  
Christodoulou D, 2000, COMMUN PUR APPL MATH, V53, P1536, DOI 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.3.CO
[10]  
2-H