Manufacturing and validation of small-diameter vascular grafts: A mini review

被引:7
作者
Hernandez-Sanchez, Deyanira [1 ]
Comtois-Bona, Maxime [1 ]
Munoz, Marcelo [1 ]
Ruel, Marc [1 ,2 ,3 ]
Suuronen, Erik J. [1 ,3 ]
Alarcon, Emilio I. [1 ,4 ]
机构
[1] Univ Ottawa Heart Inst, Div Cardiac Surg, BioEngn & Therapeut Solut BEaTS Res, 40 Ruskin St, Ottawa, ON K1Y4W7, Canada
[2] Univ Ottawa Heart Inst, Div Cardiac Surg, 40 Ruskin St, Ottawa, ON K1Y4W7, Canada
[3] Univ Ottawa, Dept Cellular & Mol Med, 451 Smyth Rd, Ottawa, ON K1H8M5, Canada
[4] Univ Ottawa, Dept Biochem Microbiol & Immunol, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ENGINEERED BLOOD-VESSELS; 3D PRINTING TECHNOLOGY; TISSUE CONSTRUCTS; ANIMAL-MODELS; MECHANICAL-PROPERTIES; ELASTOMERIC SCAFFOLD; ARTERIAL GRAFTS; BIOMATERIALS; PERFORMANCE; COLLAGEN;
D O I
10.1016/j.isci.2024.109845
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The field of small-diameter vascular grafts remains a challenge for biomaterials scientists. While decades of research have brought us much closer to developing biomimetic materials for regenerating tissues and organs, the physiological challenges involved in manufacturing small conduits that can transport blood while not inducing an immune response or promoting blood clots continue to limit progress in this area. In this short review, we present some of the most recent methods and advancements made by researchers working in the field of small-diameter vascular grafts. We also discuss some of the most critical aspects biomaterials scientists should consider when developing lab-made small-diameter vascular grafts.
引用
收藏
页数:27
相关论文
共 134 条
  • [21] Diodato Michael, 2014, Surg Res Pract, V2014, P726158, DOI 10.1155/2014/726158
  • [22] Centrifugal casting technique baseline knowledge, applications, and processing parameters: overview
    Ebhota, Williams S.
    Karun, Akhil S.
    Inambao, Freddie L.
    [J]. INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2016, 107 (10) : 960 - 969
  • [23] Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithographye
    Elomaa, Laura
    Pan, Chi-Chun
    Shanjani, Yaser
    Malkovskiy, Andrey
    Seppala, Jukka V.
    Yang, Yunzhi
    [J]. JOURNAL OF MATERIALS CHEMISTRY B, 2015, 3 (42) : 8348 - 8358
  • [24] Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach
    Ercolani, Enrico
    Del Gaudio, Costantino
    Bianco, Alessandra
    [J]. JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2015, 9 (08) : 861 - 888
  • [25] Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans
    Fang, Shu
    Ellman, Ditte Gry
    Andersen, Ditte Caroline
    [J]. CELLS, 2021, 10 (03)
  • [26] Remodeling of structurally reinforced (TPU plus PCL/PCL)-Hep electrospun small-diameter bilayer vascular grafts interposed in rat abdominal aortas
    Fang, Zhiping
    Xing, Yuehao
    Wang, Han
    Geng, Xue
    Ye, Lin
    Zhang, Ai-ying
    Gu, Yongquan
    Feng, Zeng-guo
    [J]. BIOMATERIALS SCIENCE, 2022, 10 (15) : 4257 - 4270
  • [27] Cellularized small-caliber tissue-engineered vascular grafts: looking for the ultimate gold standard
    Fayon, Adrien
    Menu, Patrick
    El Omar, Reine
    [J]. NPJ REGENERATIVE MEDICINE, 2021, 6 (01)
  • [28] Human Vascular Microphysiological System for in vitro Drug Screening
    Fernandez, C. E.
    Yen, R. W.
    Perez, S. M.
    Bedell, H. W.
    Povsic, T. J.
    Reichert, W. M.
    Truskey, G. A.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [29] Formhals A, 1934, United States Patent, Patent No. [1975504, US1975504A]
  • [30] A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs
    Freeman, Sebastian
    Ramos, Rafael
    Chando, Paul Alexis
    Zhou, Luxi
    Reeser, Kyle
    Jin, Sha
    Soman, Pranav
    Ye, Kaiming
    [J]. ACTA BIOMATERIALIA, 2019, 95 : 152 - 164