Manufacturing and validation of small-diameter vascular grafts: A mini review

被引:7
作者
Hernandez-Sanchez, Deyanira [1 ]
Comtois-Bona, Maxime [1 ]
Munoz, Marcelo [1 ]
Ruel, Marc [1 ,2 ,3 ]
Suuronen, Erik J. [1 ,3 ]
Alarcon, Emilio I. [1 ,4 ]
机构
[1] Univ Ottawa Heart Inst, Div Cardiac Surg, BioEngn & Therapeut Solut BEaTS Res, 40 Ruskin St, Ottawa, ON K1Y4W7, Canada
[2] Univ Ottawa Heart Inst, Div Cardiac Surg, 40 Ruskin St, Ottawa, ON K1Y4W7, Canada
[3] Univ Ottawa, Dept Cellular & Mol Med, 451 Smyth Rd, Ottawa, ON K1H8M5, Canada
[4] Univ Ottawa, Dept Biochem Microbiol & Immunol, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ENGINEERED BLOOD-VESSELS; 3D PRINTING TECHNOLOGY; TISSUE CONSTRUCTS; ANIMAL-MODELS; MECHANICAL-PROPERTIES; ELASTOMERIC SCAFFOLD; ARTERIAL GRAFTS; BIOMATERIALS; PERFORMANCE; COLLAGEN;
D O I
10.1016/j.isci.2024.109845
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The field of small-diameter vascular grafts remains a challenge for biomaterials scientists. While decades of research have brought us much closer to developing biomimetic materials for regenerating tissues and organs, the physiological challenges involved in manufacturing small conduits that can transport blood while not inducing an immune response or promoting blood clots continue to limit progress in this area. In this short review, we present some of the most recent methods and advancements made by researchers working in the field of small-diameter vascular grafts. We also discuss some of the most critical aspects biomaterials scientists should consider when developing lab-made small-diameter vascular grafts.
引用
收藏
页数:27
相关论文
共 134 条
  • [1] Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology
    Ahn, Hyunhee
    Ju, Young Min
    Takahashi, Hironobu
    Williams, David F.
    Yoo, James J.
    Lee, Sang Jin
    Okano, Teruo
    Atala, Anthony
    [J]. ACTA BIOMATERIALIA, 2015, 16 : 14 - 22
  • [2] Current advances in electrospun gelatin-based scaffolds for tissue engineering applications
    Aldana, Ana A.
    Abraham, Gustavo A.
    [J]. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2017, 523 (02) : 441 - 453
  • [3] Altan T, 2001, CIRP ANN-MANUF TECHN, V50, P405
  • [4] Acute Myocardial Infarction
    Anderson, Jeffrey L.
    Morrow, David A.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (21) : 2053 - 2064
  • [5] [Anonymous], 2016, ANSI/ISO 7198:2016
  • [6] Overview of hemodialysis access and assessment
    Arasu, Rohan
    Jegatheesan, Dev
    Sivakumaran, Yogeesan
    [J]. CANADIAN FAMILY PHYSICIAN, 2022, 68 (08) : 577 - 582
  • [7] The applications of heparin in vascular tissue engineering
    Aslani, Saba
    Kabiri, Mahboubeh
    HosseinZadeh, Simzar
    Hanaee-Ahvaz, Hana
    Taherzadeh, Elham Sadat
    Soleimani, Masoud
    [J]. MICROVASCULAR RESEARCH, 2020, 131
  • [8] iPSC-Derived Endothelial Cells Affect Vascular Function in a Tissue-Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome
    Atchison, Leigh
    Abutaleb, Nadia O.
    Snyder-Mounts, Elizabeth
    Gete, Yantenew
    Ladha, Alim
    Ribar, Thomas
    Cao, Kan
    Truskey, George A.
    [J]. STEM CELL REPORTS, 2020, 14 (02): : 325 - 337
  • [9] Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application
    Benrashid, Ehsan
    McCoy, Christopher C.
    Youngwirth, Linda M.
    Kim, Jina
    Manson, Roberto J.
    Otto, James C.
    Lawson, Jeffrey H.
    [J]. METHODS, 2016, 99 : 13 - 19
  • [10] Bergmeister H, 2020, Tissue-Engineered Vascular Grafts, P63, DOI [10.1007/978-3-030-05336-95, DOI 10.1007/978-3-030-05336-95]