Lambert W Functions in the Analysis of Nonlinear Dynamics and Bifurcations of a 2D γ-Ricker Population Model

被引:0
|
作者
Rocha, J. Leonel [1 ,2 ]
Taha, Abdel-Kaddous [3 ]
Abreu, Stella [4 ]
机构
[1] Polytech Inst Lisbon, CEAUL, Rua Conselheiro Emidio Navarro 1, P-1959007 Lisbon, Portugal
[2] Polytech Inst Lisbon, ISEL Engn Super Inst Lisbon, Dept Math, Rua Conselheiro Emidio Navarro 1, P-1959007 Lisbon, Portugal
[3] Fed Univ Toulouse Midi Pyrenees, INSA, 135 Ave Rangueil, F-31077 Toulouse, France
[4] Polytech Porto, CMUP, LEMA, ISEP, Rua Dr Antonio Bernardino Almeida 431, P-4249015 Porto, Portugal
关键词
gamma-Ricker population model; Lambert W function; Allee effect; fixed point; fold and flip bifurcations;
D O I
10.3390/math12121805
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study the use of Lambert W functions in the analysis of nonlinear dynamics and bifurcations of a new two-dimensional gamma-Ricker population model. Through the use of such transcendental functions, it is possible to study the fixed points and the respective eigenvalues of this exponential diffeomorphism as analytical expressions. Consequently, the maximum number of fixed points is proved, depending on whether the Allee effect parameter gamma is even or odd. In addition, the analysis of the bifurcation structure of this gamma-Ricker diffeomorphism, also taking into account the parity of the Allee effect parameter, demonstrates the results established using the Lambert W functions. Numerical studies are included to illustrate the theoretical results.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Global attractor and its 1D and 2D structures of Beverton-Holt Ricker competition model
    Cheng, Qi
    Zhang, Jun
    Zhang, Weinian
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 470
  • [22] SPECTRAL FUNCTIONS FOR THE 2D HUBBARD-MODEL
    LUCHINI, MU
    EDWARDS, DM
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1995, 99 (3-4) : 305 - 310
  • [23] A PDE MODEL FOR 2D INTRINSIC MODE FUNCTIONS
    Diop, El Hadji S.
    Alexandre, R.
    Boudraa, A. -O.
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3961 - 3964
  • [24] Nonlinear dynamics of a 2D feedback system with photorefractive gain
    Vorontsov, MA
    Zhao, MJ
    Anderson, DZ
    OPTICS COMMUNICATIONS, 1997, 134 (1-6) : 191 - 194
  • [25] Nonlinear wave dynamics in 2D periodically poled waveguides
    Gallo, K.
    2009 IEEE/LEOS WINTER TOPICALS MEETING SERIES (WTM 2009), 2009, : 160 - 161
  • [26] Homoclinic and Big Bang Bifurcations of an Embedding of 1D Allee's Functions into a 2D Diffeomorphism
    Leonel Rocha, J.
    Taha, Abdel-Kaddous
    Fournier-Prunaret, D.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (09):
  • [27] Analysis of Geometric Invariants for Three Types of Bifurcations in 2D Differential Systems
    Liu, Yongjian
    Li, Chunbiao
    Liu, Aimin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (07):
  • [28] Response of uncertain nonlinear vibration systems with 2D matrix functions
    Wen, BC
    Zhang, YM
    Liu, QL
    NONLINEAR DYNAMICS, 1998, 15 (02) : 179 - 190
  • [29] Response of Uncertain Nonlinear Vibration Systems with 2D Matrix Functions
    Bangchun Wen
    Yimin Zhang
    Qiaoling Liu
    Nonlinear Dynamics, 1998, 15 : 179 - 190
  • [30] Harmonic analysis of 2d CFT partition functions
    Nathan Benjamin
    Scott Collier
    A. Liam Fitzpatrick
    Alexander Maloney
    Eric Perlmutter
    Journal of High Energy Physics, 2021