Lambert W Functions in the Analysis of Nonlinear Dynamics and Bifurcations of a 2D γ-Ricker Population Model

被引:0
|
作者
Rocha, J. Leonel [1 ,2 ]
Taha, Abdel-Kaddous [3 ]
Abreu, Stella [4 ]
机构
[1] Polytech Inst Lisbon, CEAUL, Rua Conselheiro Emidio Navarro 1, P-1959007 Lisbon, Portugal
[2] Polytech Inst Lisbon, ISEL Engn Super Inst Lisbon, Dept Math, Rua Conselheiro Emidio Navarro 1, P-1959007 Lisbon, Portugal
[3] Fed Univ Toulouse Midi Pyrenees, INSA, 135 Ave Rangueil, F-31077 Toulouse, France
[4] Polytech Porto, CMUP, LEMA, ISEP, Rua Dr Antonio Bernardino Almeida 431, P-4249015 Porto, Portugal
关键词
gamma-Ricker population model; Lambert W function; Allee effect; fixed point; fold and flip bifurcations;
D O I
10.3390/math12121805
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study the use of Lambert W functions in the analysis of nonlinear dynamics and bifurcations of a new two-dimensional gamma-Ricker population model. Through the use of such transcendental functions, it is possible to study the fixed points and the respective eigenvalues of this exponential diffeomorphism as analytical expressions. Consequently, the maximum number of fixed points is proved, depending on whether the Allee effect parameter gamma is even or odd. In addition, the analysis of the bifurcation structure of this gamma-Ricker diffeomorphism, also taking into account the parity of the Allee effect parameter, demonstrates the results established using the Lambert W functions. Numerical studies are included to illustrate the theoretical results.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Bifurcation Analysis of the γ-Ricker Population Model Using the Lambert W Function
    Rocha, J. Leonel
    Taha, Abdel-Kaddous
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (07):
  • [2] Dynamics of the degenerate 2D Ricker equation
    Ryals, Brian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (02) : 553 - 566
  • [3] Dynamics of 2D Homographic Ricker map
    V. V. M. S. Aishwaraya
    Nonlinear Dynamics, 2024, 112 : 3027 - 3053
  • [4] Dynamics of 2D Homographic Ricker map
    Aishwaraya
    Chandramouli, V. V. M. S.
    NONLINEAR DYNAMICS, 2024, 112 (04) : 3027 - 3053
  • [5] Dynamics of 2D delayed Homographic Ricker map
    Aishwaraya, V. V. M. S.
    Chandramouli, V. V. M. S.
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2025, 13 (02)
  • [6] Generalized r-Lambert Function in the Analysis of Fixed Points and Bifurcations of Homographic 2-Ricker Maps
    Rocha, J. Leonel
    Taha, Abdel-Kaddous
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (11):
  • [7] Soliton dynamics in a 2D lattice model with nonlinear interactions
    Ioannidou, T
    Pouget, J
    Aifantis, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (03): : 643 - 652
  • [8] Dynamics of 2D delayed Homographic Ricker mapDynamics of 2D delayed Homographic Ricker mapAishwaraya and V. V. M. S Chandramouli
    V. V. M. S. Aishwaraya
    undefined Chandramouli
    International Journal of Dynamics and Control, 2025, 13 (2)
  • [9] 2D bifurcations and chaos in nonlinear circuits: a parallel computational approach
    Marszalek, Wieslaw
    Sadecki, Jan
    15TH INTERNATIONAL CONFERENCE ON SYNTHESIS, MODELING, ANALYSIS AND SIMULATION METHODS AND APPLICATIONS TO CIRCUIT DESIGN (SMACD 2018), 2018, : 297 - 300
  • [10] Dynamical Analysis and Big Bang Bifurcations of 1D and 2D Gompertz's Growth Functions
    Rocha, J. Leonel
    Taha, Abdel-Kaddous
    Fournier-Prunaret, D.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (11):