Early Exit Ensembles for Uncertainty Quantification

被引:0
作者
Qendro, Lorena [1 ]
Campbell, Alexander [1 ,2 ]
Lio, Pietro [1 ]
Mascolo, Cecilia [1 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Alan Turing Inst, Cambridge, England
来源
MACHINE LEARNING FOR HEALTH, VOL 158 | 2021年 / 158卷
基金
英国工程与自然科学研究理事会;
关键词
Uncertainty; Medical Imaging; Deep learning; Robustness; Early Exit; Out-Of-Distribution Detection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning is increasingly used for decision-making in health applications. However, commonly used deep learning models are deterministic and are unable to provide any estimate of predictive uncertainty. Quantifying model uncertainty is crucial for reducing the risk of misdiagnosis by informing practitioners of low-confident predictions. To address this issue, we propose early exit ensembles, a novel framework capable of capturing predictive uncertainty via an implicit ensemble of early exits. We evaluate our approach on the task of classification using three state-of-the-art deep learning architectures applied to three medical imaging datasets. Our experiments show that early exit ensembles provide better-calibrated uncertainty compared to Monte Carlo dropout and deep ensembles using just a single forward-pass of the model. Depending on the dataset and baseline, early exit ensembles can improve uncertainty metrics up to 2x, while increasing accuracy by up to 2% over its single model counterpart. Finally, our results suggest that by providing well-calibrated predictive uncertainty for both in- and out-of-distribution inputs, early exit ensembles have the potential to improve trustworthiness of models in high-risk medical decision-making.
引用
收藏
页码:181 / 195
页数:15
相关论文
共 55 条
[1]   Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning [J].
Abdar, Moloud ;
Samami, Maryam ;
Mahmoodabad, Sajjad Dehghani ;
Doan, Thang ;
Mazoure, Bogdan ;
Hashemifesharaki, Reza ;
Liu, Li ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
[2]  
Amodei D, 2016, Arxiv, DOI [arXiv:1606.06565, DOI 10.48550/ARXIV.1606.06565]
[3]  
[Anonymous], 1964, Cours d'economie politique
[4]  
Bizopoulos P, 2019, IEEE ENG MED BIO, P702, DOI [10.1109/embc.2019.8856620, 10.1109/EMBC.2019.8856620]
[5]  
Blundell C, 2015, Arxiv, DOI [arXiv:1505.05424, DOI 10.48550/ARXIV.1505.05424]
[6]  
Bolukbasi T, 2017, Arxiv, DOI arXiv:1702.07811
[7]   A Unifying Mutual Information View of Metric Learning: Cross-Entropy vs. Pairwise Losses [J].
Boudiaf, Malik ;
Rony, Jerome ;
Ziko, Imtiaz Masud ;
Granger, Eric ;
Pedersoli, Marco ;
Piantanida, Pablo ;
Ben Ayed, Ismail .
COMPUTER VISION - ECCV 2020, PT VI, 2020, 12351 :548-564
[8]  
Brier GW, 1950, MON WEATHER REV, V78, P1, DOI [DOI 10.1175/1520-0493(1950)0782.0.CO
[9]  
2, 10.1175/1520-0493(1950)078andlt
[10]  
0001:VOFEITandgt