Polygenic Risk Score Assessment for Coronary Artery Disease in Asian Indians

被引:2
作者
Rout, Madhusmita [1 ]
Tung, Gurleen Kaur [1 ]
Singh, Jai Rup [2 ]
Mehra, Narinder Kumar [3 ]
Wander, Gurpreet S. [4 ]
Ralhan, Sarju [4 ]
Sanghera, Dharambir K. [1 ,5 ,6 ,7 ,8 ]
机构
[1] Univ Oklahoma, Coll Med, Dept Pediat, Hlth Sci Ctr,Sect Genet, 940 Stanton L Young Blvd,Rm 317 BMSB, Oklahoma City, OK 73104 USA
[2] Guru Nanak Dev Univ, Amritsar, Punjab, India
[3] All India Inst Med Sci & Res, New Delhi, India
[4] Hero DMC Heart Inst, Ludhiana, Punjab, India
[5] Univ Oklahoma, Dept Pharmaceut Sci, Hlth Sci Ctr, Oklahoma City, OK 73104 USA
[6] Univ Oklahoma, Hlth Sci Ctr, Coll Med, Dept Physiol, Oklahoma City, OK 73190 USA
[7] Univ Oklahoma, Hlth Sci Ctr, Oklahoma Ctr Neurosci, Oklahoma City, OK 73104 USA
[8] Univ Oklahoma, Hlth Sci Ctr, Harold Hamm Diabet Ctr, Oklahoma City, OK 73106 USA
关键词
Polygenic risk score; Clinical risk score; Coronary artery disease; Asian Indians; GENOME-WIDE ASSOCIATION; DIABETES SUSCEPTIBILITY; HEART-DISEASE; IDENTIFIES; 6; METAANALYSIS; INDIVIDUALS; POPULATION; SIKHS; PREDICTION; VARIANTS;
D O I
10.1007/s12265-024-10511-z
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We evaluated the performance of various polygenic risk score (PRS) models derived from European (EU), South Asian (SA), and Punjabi Asian Indians (AI) studies on 13,974 subjects from AI ancestry. While all models successfully predicted Coronary artery disease (CAD) risk, the AI, SA, and EU + AI were superior predictors and more transportable than the EU model; the predictive performance in training and test sets was 18% and 22% higher in AI and EU + AI models, respectively than in EU. Comparing individuals with extreme PRS quartiles, the AI and EU + AI captured individuals with high CAD risk showed 2.6 to 4.6 times higher efficiency than the EU. Interestingly, including the clinical risk score did not significantly change the performance of any genetic model. The enrichment of diversity variants in EU PRS improves risk prediction and transportability. Establishing population-specific normative and risk factors and inclusion into genetic models would refine the risk stratification and improve the clinical utility of CAD PRS.
引用
收藏
页码:1086 / 1096
页数:11
相关论文
共 53 条
[1]   Polygenic risk score and coronary artery disease: A meta-analysis of 979,286 participant data [J].
Agbaedeng, Thomas A. ;
Noubiap, Jean Jacques ;
Mato, Edith Pascale Mofo ;
Chew, Derek P. ;
Figtree, Gemma A. ;
Said, M. Abdullah ;
van der Harst, Pim .
ATHEROSCLEROSIS, 2021, 333 :48-55
[2]  
Amer Diabet Assoc, 2013, DIABETES CARE, V36, pS67, DOI [10.2337/dc13-S067, 10.2337/dc11-S011, 10.2337/dc10-S011, 10.2337/dc14-S081, 10.2337/dc12-s064, 10.2337/dc12-s011, 10.2337/dc11-S062, 10.2337/dc13-S011, 10.2337/dc10-S062]
[3]   A Bidirectional Mendelian Randomization Study to evaluate the causal role of reduced blood vitamin D levels with type 2 diabetes risk in South Asians and Europeans [J].
Bejar, Cynthia A. ;
Goyal, Shiwali ;
Afzal, Shoaib ;
Mangino, Massimo ;
Zhou, Ang ;
van der Most, Peter J. ;
Bao, Yanchun ;
Gupta, Vipin ;
Smart, Melissa C. ;
Walia, Gagandeep K. ;
Verweij, Niek ;
Power, Christine ;
Prabhakaran, Dorairaj ;
Singh, Jai Rup ;
Mehra, Narinder K. ;
Wander, Gurpreet S. ;
Ralhan, Sarju ;
Kinra, Sanjay ;
Kumari, Meena ;
de Borst, Martin H. ;
Hypponen, Elina ;
Spector, Tim D. ;
Nordestgaard, Borge G. ;
Blackett, Piers R. ;
Sanghera, Dharambir K. .
NUTRITION JOURNAL, 2021, 20 (01)
[4]   Mutations causative of familial hypercholesterolaemia: screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217 [J].
Benn, Marianne ;
Watts, Gerald F. ;
Tybjaerg-Hansen, Anne ;
Nordestgaard, Borge G. .
EUROPEAN HEART JOURNAL, 2016, 37 (17) :1384-1394
[5]  
Brahmachari SK, 2008, J GENET, V87, P3
[6]   Vitamin D Deficiency and Cardio-Metabolic Risk in a North Indian Community with Highly Prevalent Type 2 Diabetes [J].
Braun, Timothy R. ;
Been, Latonya F. ;
Blackett, Piers R. ;
Sanghera, Dharambir K. .
JOURNAL OF DIABETES & METABOLISM, 2012, 3 (07)
[7]   Developing and evaluating polygenic risk prediction models for stratified disease prevention [J].
Chatterjee, Nilanjan ;
Shi, Jianxin ;
Garcia-Closas, Montserrat .
NATURE REVIEWS GENETICS, 2016, 17 (07) :392-406
[8]   Tutorial: a guide to performing polygenic risk score analyses [J].
Choi, Shing Wan ;
Mak, Timothy Shin-Heng ;
O'Reilly, Paul F. .
NATURE PROTOCOLS, 2020, 15 (09) :2759-2772
[9]   General cardiovascular risk profile for use in primary care - The Framingham Heart Study [J].
D'Agostino, Ralph B. ;
Vasan, Ramachandran S. ;
Pencina, Michael J. ;
Wolf, Philip A. ;
Cobain, Mark ;
Massaro, Joseph M. ;
Kannel, William B. .
CIRCULATION, 2008, 117 (06) :743-753
[10]   Use of Polygenic Risk Scores for Coronary Heart Disease in Ancestrally Diverse Populations [J].
Dikilitas, Ozan ;
Schaid, Daniel J. ;
Tcheandjieu, Catherine ;
Clarke, Shoa L. ;
Assimes, Themistocles L. ;
Kullo, Iftikhar J. .
CURRENT CARDIOLOGY REPORTS, 2022, 24 (09) :1169-1177