Neural networks for the analysis of 2D radio-xenon beta gamma spectra

被引:1
作者
Hall, Robert [1 ]
Carpency, Thienbao [1 ]
Scoville, James [1 ]
Vincent, Robert Anthony [1 ]
Caldwell, Johnathan [1 ]
机构
[1] United States Air Force Acad, El Paso Cty, CO 80840 USA
关键词
Nuclear treaty monitoring; Radioxenon; Beta-gamma analysis; Neural network;
D O I
10.1007/s10967-024-09657-6
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Atmospheric traces of radioactive xenon can be a strong indicator for underground nuclear fission reactions. 131mXe, 133Xe, 133mXe and 135Xe are the primary gaseous isotopes/isomers currently used to identify and classify nuclear events. During decay, each of these radioactive species produces a unique beta-gamma energy spectra, which can be measured using beta-gamma coincidence counting. Current operational Xe beta-gamma spectrum analysis software relies on Region of Interest (ROI) counting (Bowyer et al. in J Environ Radioact 59(2):139-151, 2002). This algorithm occasionally produces mismeasurements, especially when quantifying meta-stable isomers, due to overlapping ROIs and shifts in detector calibration in fielded systems over time (Ringbom and Axelsson in Appl Radiat Isot 156:108950, 2020). In an attempt to better de-convolve overlapping isotope spectra we have developed a technique that applies a supervised neural-network implemented in TensorFlow with Keras to classify and quantify the isotopes and mixtures of isomers based on their beta-gamma spectra-similar to image recognition. From this, we have improved upon the false-positive rate for classification and regression models, however challenges remain with dealing with differing detector energy calibrations and with estimating measurement uncertainty.
引用
收藏
页码:5799 / 5809
页数:11
相关论文
共 27 条
[1]  
Abadi M, 2016, TENSORFLOW LARGE SCA
[2]   Machine learning for the analysis of 2D radioxenon beta gamma spectra [J].
Armstrong, Jordan ;
Carpency, Thienbao ;
Scoville, James ;
Sesler, Jefferson ;
Hall, Robert .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2021, 327 (02) :857-867
[3]   Classification of radioxenon spectra with deep learning algorithm [J].
Azimi, Sepideh Alsadat ;
Afarideh, Hossein ;
Chai, Jong-Seo ;
Kalinowski, Martin ;
Gheddou, Abdelhakim ;
Hofman, Radek .
JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2021, 237 (237)
[4]  
Bellinger C, 2012, LECT NOTES COMPUT SC, V7190, P1, DOI 10.1007/978-3-642-29356-6_1
[5]   A Review of Global Radioxenon Background Research and Issues [J].
Bowyer, T. W. .
PURE AND APPLIED GEOPHYSICS, 2021, 178 (07) :2665-2675
[6]   Detection and analysis of xenon isotopes for the comprehensive nuclear-test-ban treaty international monitoring system [J].
Bowyer, TW ;
Schlosser, C ;
Abel, KH ;
Auer, M ;
Hayes, JC ;
Heimbigner, TR ;
McIntyre, JI ;
Panisko, ME ;
Reeder, PL ;
Satorius, H ;
Schulze, J ;
Weiss, W .
JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2002, 59 (02) :139-151
[7]   Field testing of collection and measurement of radioxenon for the Comprehensive Test Ban Treaty [J].
Bowyer, TW ;
Abel, KH ;
Hubbard, CW ;
Panisko, ME ;
Reeder, PL ;
Thompson, RC ;
Warner, RA .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 1999, 240 (01) :109-122
[8]  
Bowyer TW, 1999, HIGH SENSITIVITY DET
[9]  
Cooper M., 2016, MINIMUM DETECTABLE C
[10]   Radioxenon net count calculations revisited [J].
Cooper, Matthew W. ;
Auer, Matthias ;
Bowyer, Theodore W. ;
Casey, Leslie A. ;
Elmgren, Klas ;
Ely, James H. ;
Foxe, Michael P. ;
Gheddou, Abdelhakim ;
Gohla, Herbert ;
Hayes, James C. ;
Johnson, Christine M. ;
Kalinowski, Martin ;
Klingberg, Franziska J. ;
Liu, Boxue ;
Mayer, Michael F. ;
McIntyre, Justin I. ;
Plenteda, Romano ;
Popov, Vladimir ;
Zahringer, Matthias .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2019, 321 (02) :369-382