Impact of Hydroxyapatite on Gelatin/Oxidized Alginate 3D-Printed Cryogel Scaffolds

被引:2
|
作者
Zhanbassynova, Ainur [1 ]
Mukasheva, Fariza [1 ]
Abilev, Madi [1 ]
Berillo, Dmitriy [2 ]
Trifonov, Alexander [1 ]
Akilbekova, Dana [1 ]
机构
[1] Nazarbayev Univ, Sch Engn & Digital Sci, Dept Chem & Mat Engn, Astana 010000, Kazakhstan
[2] Satbayev Univ, Dept Chem & Biochem Engn, Alma Ata 050013, Kazakhstan
关键词
3D printing; cryogelation; hydroxyapatite; stem cells; bone tissue engineering; OSTEOGENIC DIFFERENTIATION; BONE; GELATIN;
D O I
10.3390/gels10060406
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Fabrication of scaffolds via 3D printing is a promising approach for tissue engineering. In this study, we combined 3D printing with cryogenic crosslinking to create biocompatible gelatin/oxidized alginate (Gel/OxAlg) scaffolds with large pore sizes, beneficial for bone tissue regeneration. To enhance the osteogenic effects and mechanical properties of these scaffolds, we evaluated the impact of hydroxyapatite (HAp) on the rheological characteristics of the 2.86% (1:1) Gel/OxAlg ink. We investigated the morphological and mechanical properties of scaffolds with low, 5%, and high 10% HAp content, as well as the resulting bio- and osteogenic effects. Scanning electron microscopy revealed a reduction in pore sizes from 160 to 180 mu m (HAp-free) and from 120 to 140 mu m for both HAp-containing scaffolds. Increased stability and higher Young's moduli were measured for 5% and 10% HAp (18 and 21 kPa, respectively) compared to 11 kPa for HAp-free constructs. Biological assessments with mesenchymal stem cells indicated excellent cytocompatibility and osteogenic differentiation in all scaffolds, with high degree of mineralization in HAp-containing constructs. Scaffolds with 5% HAp exhibited improved mechanical characteristics and shape fidelity, demonstrated positive osteogenic impact, and enhanced bone tissue formation. Increasing the HAp content to 10% did not show any advantages in osteogenesis, offering a minor increase in mechanical strength at the cost of significantly compromised shape fidelity.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering
    Iglesias-Mejuto, Ana
    Garcia-Gonzalez, Carlos A.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 131
  • [2] The morphology of anisotropic 3D-printed hydroxyapatite scaffolds
    Fierz, Fabienne C.
    Beckmann, Felix
    Huser, Marius
    Irsen, Stephan H.
    Leukers, Barbara
    Witte, Frank
    Degistirici, Oezer
    Andronache, Adrian
    Thie, Michael
    Mueller, Bert
    BIOMATERIALS, 2008, 29 (28) : 3799 - 3806
  • [3] The potential impact of polyethylenimine on biological behavior of 3D-printed alginate scaffolds
    Khoshnood, Negin
    Zamanian, Ali
    Abbasi, Maryam
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 178 : 19 - 28
  • [4] 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering
    Dutta, Sayan Deb
    Hexiu, Jin
    Patel, Dinesh K.
    Ganguly, Keya
    Lim, Ki-Taek
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 167 : 644 - 658
  • [5] Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Lee, Chang-Min
    Yang, Seong-Won
    Jung, Sang-Chul
    Kim, Byung-Hoon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (04) : 2747 - 2750
  • [6] 3D-printed injectable nanocomposite cryogel scaffolds for bone tissue regeneration
    Castanheira, Edgar J.
    Maia, Joao R.
    Monteiro, Luis P. G.
    Sobreiro-Almeida, Rita
    Wittig, Nina K.
    Birkedal, Henrik
    Rodrigues, Joao M. M.
    Mano, Joao F.
    MATERIALS TODAY NANO, 2024, 28
  • [7] 3D-printed hydroxyapatite/gelatin bone scaffolds reinforced with graphene oxide: Optimized fabrication and mechanical characterization
    Lee, Hoyeol
    Yoo, Jin Myoung
    Ponnusamy, Nandha Kumar
    Nam, Seung Yan
    CERAMICS INTERNATIONAL, 2022, 48 (07) : 10155 - 10163
  • [8] 3D-printed fish gelatin scaffolds for cartilage tissue engineering
    Maihemuti, Abudureheman
    Zhang, Han
    Lin, Xiang
    Wang, Yangyufan
    Xu, Zhihong
    Zhang, Dagan
    Jiang, Qing
    BIOACTIVE MATERIALS, 2023, 26 : 77 - 87
  • [9] In vitro degradation of 3D-printed polycaprolactone\biomimetic hydroxyapatite scaffolds: Impact of the sterilization method
    del-Mazo-Barbara, Laura
    Gomez-Cuyas, Judith
    Martinez-Orozco, Leandro
    Perez, Orlando Santana
    Bou-Petit, Elisabeth
    Ginebra, Maria-Pau
    POLYMER TESTING, 2024, 139
  • [10] 3D-printed microstructured alginate scaffolds for neural tissue engineering
    Li, Jianfeng
    Hietel, Benjamin
    Brunk, Michael G. K.
    Reimers, Armin
    Willems, Christian
    Groth, Thomas
    Cynis, Holger
    Adelung, Rainer
    Schuett, Fabian
    Sacher, Wesley D.
    Poon, Joyce K. S.
    TRENDS IN BIOTECHNOLOGY, 2025, 43 (02)