Algorithms for split equality variational inequality and fixed point problems

被引:2
作者
Mekuriaw, Gedefaw [1 ,2 ]
Zegeye, Habtu [3 ]
Takele, Mollalgn Haile [1 ]
Tufa, Abebe Regassa [4 ]
机构
[1] Bahir Dar Univ, Dept Math, Bahir Dar, Ethiopia
[2] Debre Markos Univ, Dept Math, Debre Markos, Ethiopia
[3] Botswana Int Univ Sci & Technol, Dept Math, Palapye, Botswana
[4] Univ Botswana, Dept Math, Gaborone, Botswana
关键词
Inertial iterative algorithm; quasi-monotone mappings; weakly sequentially continuous mappings; variational inequality problem split equality problems; SUBGRADIENT EXTRAGRADIENT METHOD; ITERATIVE ALGORITHMS; INCLUSION PROBLEMS; STRONG-CONVERGENCE; FEASIBILITY;
D O I
10.1080/00036811.2024.2348669
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study presents algorithms for addressing split equality variational inequality and fixed point problems in real Hilbert spaces that are inertial-like subgradient extragradient and inertial-like Tseng extragradient, respectively. We prove that the resulting sequences of the proposed algorithms converge strongly to solutions of the problem provided that the underlying mappings are quasi-monotone, uniformly continuous and quasi-nonexpansive mappings under some mild conditions. Furthermore, numerical experiments are shown to demonstrate the effectiveness of our techniques.
引用
收藏
页码:3267 / 3294
页数:28
相关论文
共 53 条
[1]  
[Anonymous], 2016, Dyn. Contin. Discrete Impuls. Syst., Ser. B
[2]  
Attouch H, 2008, J CONVEX ANAL, V15, P485
[3]   Split equality variational inequality problems for pseudomonotone mappings in Banach spaces [J].
Boikanyo, Oganeditse A. ;
Zegeye, Habtu .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (01) :139-158
[4]   The Split Equality Fixed Point Problem for Quasi-Pseudo-Contractive Mappings Without Prior Knowledge of Norms [J].
Boikanyo, Oganeditse A. ;
Zegeye, Habtu .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (07) :759-777
[5]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[6]   Inertial-Like Subgradient Extragradient Methods for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive and Strictly Pseudocontractive Mappings [J].
Ceng, Lu-Chuan ;
Petrusel, Adrian ;
Wen, Ching-Feng ;
Yao, Jen-Chih .
MATHEMATICS, 2019, 7 (09)
[7]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[8]  
Censor Y., 1994, Numer Algorithms, V8, P221, DOI [10.1007/BF02142692, DOI 10.1007/BF02142692]
[9]   Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (4-5) :827-845
[10]   Algorithms for the Split Variational Inequality Problem [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
NUMERICAL ALGORITHMS, 2012, 59 (02) :301-323