Modelling and optimization based on RSM in dry turning parameters of AISI H13 steel using novel hybrid design texture tool

被引:0
|
作者
Kumar, G. Venkata Ajay [1 ]
Ramaa, A. [1 ]
Shilpa, M. [2 ]
机构
[1] RV Coll Engn, Dept Ind Engn & Management, Bengaluru, India
[2] Ramaiah Inst Technol, Bengaluru, India
来源
COGENT ENGINEERING | 2024年 / 11卷 / 01期
关键词
AISI H13; texture tool machining; dry turning; RSM; optimization; TI-6AL-4V ALLOY; PERFORMANCE; ROUGHNESS;
D O I
10.1080/23311916.2024.2375427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface texturing on the cutting tool reduces friction in dry machining because high temperatures are recorded at the tool chip interface, resulting in excessive tool wear. This work focuses on the surface texturing of tungsten-coated carbide tools under dry machining of AISI H13 steel. Experiments were conducted using the principles of experimental design and predictive models are developed using the response surface methodology (RSM). The coefficient of determination (R-2) for the measured output surface roughness (R-a) and tool-chip interface temperature (TCt) were 95% and 98%, respectively. The RSM-predicted models were in close agreement with the measured values. Desirability function approach (DFA) was used for the optimization and found the optimum values as Ra: 0.6685 mu m and TCt: 156.95 degrees C at machining parameters such as cutting velocity: 125.6 m/min, federate: 0.12 mm/rev and depth of cut: 0.1 mm.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Experimental Investigation on Tool Wear in AISI H13 Die Steel Turning Using RSM and ANN Methods
    R. Suresh
    Ajith G. Joshi
    M. Manjaiah
    Arabian Journal for Science and Engineering, 2021, 46 : 2311 - 2325
  • [2] Experimental Investigation on Tool Wear in AISI H13 Die Steel Turning Using RSM and ANN Methods
    Suresh, R.
    Joshi, Ajith G.
    Manjaiah, M.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (03) : 2311 - 2325
  • [3] Multiple Performance characteristics Optimization in the Turning Process of AISI H13 Tool Steel using Taguchi and Fuzzy Logic
    Soepangkat, Bobby O. P.
    Pramujati, Bambang
    Karuniawan, Bayu W.
    ADVANCES IN APPLIED MECHANICS AND MATERIALS, 2014, 493 : 583 - +
  • [4] Optimization of process parameters in Nano-particle mixed EDM of hardened die steel AISI H13 using RSM and GA
    Saba, Tasfia
    Amin, A. K. M. Nurul
    Islam, Sanjida
    Chaity, Maisha Rahman
    Tuli, Noshin Tasnim
    Bin Rashid, Adib
    RESULTS IN SURFACES AND INTERFACES, 2025, 19
  • [5] Effect of process parameters for wire EDM of AISI H13 tool steel
    Sadhana, A. Divya
    Prakash, J. Udaya
    Ananth, S.
    Juliyanaa, S. Jebarose
    Rubi, C. Sarala
    MATERIALS TODAY-PROCEEDINGS, 2022, 52 : 1870 - 1874
  • [6] Impact of cutting fluid on hybrid manufacturing of AISI H13 tool steel
    Cortina, Magdalena
    Arrizubieta, Jon Inaki
    Lamikiz, Aitzol
    Ukar, Eneko
    RAPID PROTOTYPING JOURNAL, 2022, 28 (05) : 933 - 944
  • [7] Modelling of tool wear and residual stress during machining of AISI H13 tool steel
    Outeiro, Jose C.
    Umbrello, Domenico
    Pinat, Jose C.
    Rizzuti, Stefania
    NUMIFORM '07: MATERIALS PROCESSING AND DESIGN: MODELING, SIMULATION AND APPLICATIONS, PTS I AND II, 2007, 908 : 1155 - +
  • [8] Optimization of cutting parameters in Dry Turning of AISI A2 Tool Steel using Carbide Tool by Taguchi Based Fuzzy Logics
    Pathak, A. D.
    Warghane, R. S.
    Deokar, S. U.
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (02) : 5082 - 5090
  • [9] Optimization of process parameters for pulsed laser milling of micro-channels on AISI H13 tool steel
    Teixidor, Daniel
    Ferrer, Ines
    Ciurana, Joaquim
    Oezel, Tugrul
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2013, 29 (01) : 209 - 218
  • [10] Robust multiple criteria decision making applied to optimization of AISI H13 hardened steel turning with PCBN wiper tool
    Souza Rocha, Luiz Celio
    de Paiva, Anderson Paulo
    Rotela Junior, Paulo
    Balestrassi, Pedro Paulo
    da Silva Campos, Paulo Henrique
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 89 (5-8): : 2251 - 2268