Liquid-Phase Exfoliation of 3D Metal-Organic Frameworks into Nanosheets

被引:1
作者
Ji, Li-Jun [1 ,2 ]
Yang, Tian-Yi [3 ,4 ]
Feng, Guo-Qiang [1 ,2 ]
Li, Sha [1 ,2 ]
Li, Wei [3 ,4 ]
Bu, Xian-He [3 ,4 ]
机构
[1] Hubei Univ Educ, Dept Phys & Mech & Elect Engn, Wuhan 430074, Peoples R China
[2] Hubei Univ Educ, Expert Workstat Terahertz Technol & Adv Energy Mat, Wuhan 430074, Peoples R China
[3] Nankai Univ, Smart Sensing Interdisciplinary Sci Ctr, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[4] TKL Met & Mol Based Mat Chem, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
2D nanosheets; 3D MOFs; liquid-phase exfoliation; mechanical anisotropy; MEMBRANES; EVOLUTION;
D O I
10.1002/adma.202404756
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Traditionally, the acquisition of 2D materials involved the exfoliation of layered crystals. However, the anisotropic bonding arrangements within 3D crystals indicate they are mechanically reminiscent of 2D counterparts and could also be exfoliated into nanosheets. This report delineates the preparation of 2D nanosheets from six representative 3D metal-organic frameworks (MOFs) through liquid-phase exfoliation. Notably, the cleavage planes of exfoliated nanosheets align perpendicular to the direction of the minimum elastic modulus (E-min) within the pristine 3D frameworks. The findings suggest that the in-plane and out-of-plane bonding forces of the exfoliated nanosheets can be correlated with the maximum elastic modulus (E-max) and E-min of the 3D frameworks, respectively. E-max influences the ease of cleaving adjacent layers, while E-min governs the ability to resist cracking of layers. Hence, a combination of large E-max and small E-min indicates an efficient exfoliation process, and vice versa. The ratio of E-max/E-min, denoted as A(max/min), is adopted as a universal index to quantify the ease of mechanical exfoliation for 3D MOFs. This ratio, readily accessible through mechanical experiments and computation, serves as a valuable metric for selecting appropriate exfoliation methods to produce surfactant-free 2D nanosheets from various 3D materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Liquid-phase exfoliation of violet phosphorus for electronic applications
    Lin, Shenghuang
    Lai, Wai Kin
    Li, Yanyong
    Lu, Wei
    Bai, Gongxun
    Lau, Shu Ping
    SMARTMAT, 2021, 2 (02): : 226 - 233
  • [42] Promotion of Proton Conductivity by Encapsulation of Metal-Organic Polyhedra in Metal-Organic Frameworks
    Wang, Bin-Cheng
    Feng, Zhi-Ying
    Hao, Biao-Biao
    Zhang, Chen-Xi
    Wang, Qing-Lun
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (47) : 12137 - 12143
  • [43] Flux melting of metal-organic frameworks
    Longley, Louis
    Collins, Sean M.
    Li, Shichun
    Smales, Glen J.
    Erucar, Ilknur
    Qiao, Ang
    Hou, Jingwei
    Doherty, Cara M.
    Thornton, Aaron W.
    Hill, Anita J.
    Yu, Xiao
    Terrill, Nicholas J.
    Smith, Andrew J.
    Cohen, Seth M.
    Midgley, Paul A.
    Keen, David A.
    Telfer, Shane G.
    Bennett, Thomas D.
    CHEMICAL SCIENCE, 2019, 10 (12) : 3592 - 3601
  • [44] Liquid-phase exfoliation of titanium disulfide nanosheets in aqueous ionic liquid solutions for highly efficient CO2 electroreduction
    Pang, Chaojie
    Liu, Jiage
    Peng, Rui
    Guo, Yingying
    Li, Zhiyong
    Wang, Huiyong
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 381
  • [45] Metal-organic frameworks in separations: A review
    Firooz, Sepideh Khaki
    Armstrong, Daniel W.
    ANALYTICA CHIMICA ACTA, 2022, 1234
  • [46] Thin films of metal-organic frameworks
    Zacher, Denise
    Shekhah, Osama
    Woell, Christof
    Fischer, Roland A.
    CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1418 - 1429
  • [47] Metal-Organic Frameworks for Water Desalination
    Dutta, Subhajit
    de Luis, Roberto Fernandez
    Goscianska, Joanna
    Demessence, Aude
    Ettlinger, Romy
    Wuttke, Stefan
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (43)
  • [48] Two-Dimensional Metal-Organic Frameworks and Covalent Organic Frameworks
    Wang, Qiankun
    Sun, Jiang
    Wei, Dacheng
    CHINESE JOURNAL OF CHEMISTRY, 2022, 40 (11) : 1359 - 1385
  • [49] Oriented Circular Dichroism Analysis of Chiral Surface-Anchored Metal-Organic Frameworks Grown by Liquid-Phase Epitaxy and upon Loading with Chiral Guest Compounds
    Gu, Zhi-Gang
    Buerck, Jochen
    Bihlmeier, Angela
    Liu, Jinxuan
    Shekhah, Osama
    Weidler, Peter G.
    Azucena, Carlos
    Wang, Zhengbang
    Heissler, Stefan
    Gliemann, Hartmut
    Klopper, Wim
    Ulrich, Anne S.
    Woell, Christof
    CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (32) : 9879 - 9882
  • [50] Shaping of metal-organic frameworks at the interface
    Wang, Jierui
    Zhu, He
    Zhu, Shiping
    CHEMICAL ENGINEERING JOURNAL, 2023, 466