A nomogram model combining computed tomography-based radiomics and Krebs von den Lungen-6 for identifying low-risk rheumatoid arthritis-associated interstitial lung disease

被引:1
作者
Han, Nie [1 ]
Guo, Zhinan [1 ]
Zhu, Diru [2 ]
Zhang, Yu [2 ]
Qin, Yayi [3 ]
Li, Guanheng [1 ]
Gu, Xiaoli [2 ]
Jin, Lin [1 ]
机构
[1] Shanghai Univ Tradit Chinese Med, Guanghua Hosp, Dept Ultrasound, Shanghai, Peoples R China
[2] Shanghai Univ Tradit Chinese Med, Guanghua Hosp, Dept Radiol, Shanghai, Peoples R China
[3] Shanghai Univ Tradit Chinese Med, Guanghua Hosp, Dept Pulm Funct, Shanghai, Peoples R China
关键词
computed tomography; radiomics; KL-6; rheumatoid arthritis; interstitial lung disease; IDIOPATHIC PULMONARY-FIBROSIS; CLASSIFICATION; PNEUMONIA; CRITERIA; SOCIETY; PATTERN; UPDATE; KL-6;
D O I
10.3389/fimmu.2024.1417156
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Objectives Quantitatively assess the severity and predict the mortality of interstitial lung disease (ILD) associated with Rheumatoid arthritis (RA) was a challenge for clinicians. This study aimed to construct a radiomics nomogram based on chest computed tomography (CT) imaging by using the ILD-GAP (gender, age, and pulmonary physiology) index system for clinical management.Methods Chest CT images of patients with RA-ILD were retrospectively analyzed and staged using the ILD-GAP index system. The balanced dataset was then divided into training and testing cohorts at a 7:3 ratio. A clinical factor model was created using demographic and serum analysis data, and a radiomics signature was developed from radiomics features extracted from the CT images. Combined with the radiomics signature and independent clinical factors, a nomogram model was established based on the Rad-score and clinical factors. The model capabilities were measured by operating characteristic curves, calibration curves and decision curves analyses.Results A total of 177 patients were divided into two groups (Group I, n = 107; Group II, n = 63). Krebs von den Lungen-6, and nineteen radiomics features were used to build the nomogram, which showed favorable calibration and discrimination in the training cohort [AUC, 0.948 (95% CI: 0.910-0.986)] and the testing validation cohort [AUC, 0.923 (95% CI: 0.853-0.993)]. Decision curve analysis demonstrated that the nomogram performed well in terms of clinical usefulness.Conclusion The CT-based radiomics nomogram model achieved favorable efficacy in predicting low-risk RA-ILD patients.
引用
收藏
页数:11
相关论文
共 43 条
[1]   2010 Rheumatoid Arthritis Classification Criteria An American College of Rheumatology/European League Against Rheumatism Collaborative Initiative [J].
Aletaha, Daniel ;
Neogi, Tuhina ;
Silman, Alan J. ;
Funovits, Julia ;
Felson, David T. ;
Bingham, Clifton O., III ;
Birnbaum, Neal S. ;
Burmester, Gerd R. ;
Bykerk, Vivian P. ;
Cohen, Marc D. ;
Combe, Bernard ;
Costenbader, Karen H. ;
Dougados, Maxime ;
Emery, Paul ;
Ferraccioli, Gianfranco ;
Hazes, Johanna M. W. ;
Hobbs, Kathryn ;
Huizinga, Tom W. J. ;
Kavanaugh, Arthur ;
Kay, Jonathan ;
Kvien, Tore K. ;
Laing, Timothy ;
Mease, Philip ;
Menard, Henri A. ;
Moreland, Larry W. ;
Naden, Raymond L. ;
Pincus, Theodore ;
Smolen, Josef S. ;
Stanislawska-Biernat, Ewa ;
Symmons, Deborah ;
Tak, Paul P. ;
Upchurch, Katherine S. ;
Vencovsky, Jiri ;
Wolfe, Frederick ;
Hawker, Gillian .
ARTHRITIS AND RHEUMATISM, 2010, 62 (09) :2569-2581
[2]   Improving risk-stratification of rheumatoid arthritis patients for interstitial lung disease [J].
Avouac, Jerome ;
Cauvet, Anne ;
Steelandt, Alexia ;
Shirai, Yuichiro ;
Elhai, Muriel ;
Kuwana, Masataka ;
Distler, Oliver ;
Allanore, Yannick .
PLOS ONE, 2020, 15 (05)
[3]   Digital Technology and the Future of Interstitial Lung Diseases 2 Machine learning in radiology: the new frontier in interstitial lung diseases [J].
Barnes, Hayley ;
Humphries, Stephen M. ;
George, Peter M. ;
Assayag, Deborah ;
Glaspole, Ian ;
Mackintosh, John A. ;
Corte, Tamera J. ;
Glassberg, Marilyn ;
Johannson, Kerri A. ;
Calandriello, Lucio ;
Felder, Federico ;
Wells, Athol ;
Walsh, Simon .
LANCET DIGITAL HEALTH, 2023, 5 (01) :E41-E50
[4]   Predicting cancer outcomes with radiomics and artificial intelligence in radiology [J].
Bera, Kaustav ;
Braman, Nathaniel ;
Gupta, Amit ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2022, 19 (02) :132-146
[5]   Radiomics and artificial intelligence for precision medicine in lung cancer treatment [J].
Chen, Mitchell ;
Copley, Susan J. ;
Viola, Patrizia ;
Lu, Haonan ;
Aboagye, Eric O. .
SEMINARS IN CANCER BIOLOGY, 2023, 93 :97-113
[6]   Beyond the joints, the extra-articular manifestations in rheumatoid arthritis [J].
Conforti, Alessandro ;
Di Cola, Ilenia ;
Pavlych, Viktoriya ;
Ruscitti, Piero ;
Berardicurti, Onorina ;
Ursini, Francesco ;
Giacomelli, Roberto ;
Cipriani, Paola .
AUTOIMMUNITY REVIEWS, 2021, 20 (02)
[7]   Elevated anti-cyclic citrullinated peptide antibody titer is associated with increased risk for interstitial lung disease [J].
Correia, Chase S. ;
Briones, Melissa R. ;
Guo, Rong ;
Ostrowski, Rochella A. .
CLINICAL RHEUMATOLOGY, 2019, 38 (04) :1201-1206
[8]   Detection of Rheumatoid Arthritis-Interstitial Lung Disease Is Enhanced by Serum Biomarkers [J].
Doyle, Tracy J. ;
Patel, Avignat S. ;
Hatabu, Hiroto ;
Nishino, Mizuki ;
Wu, Guodong ;
Osorio, Juan C. ;
Golzarri, Maria F. ;
Traslosheros, Andres ;
Chu, Sarah G. ;
Frits, Michelle L. ;
Iannaccone, Christine K. ;
Koontz, Diane ;
Fuhrman, Carl ;
Weinblatt, Michael E. ;
El-Chemaly, Souheil Y. ;
Washko, George R. ;
Hunninghake, Gary M. ;
Choi, Augustine M. K. ;
Dellaripa, Paul F. ;
Oddis, Chester V. ;
Shadick, Nancy A. ;
Ascherman, Dana P. ;
Rosas, Ivan O. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 191 (12) :1403-1412
[9]   Interstitial lung disease in systemic sclerosis - A simple staging system [J].
Goh, Nicole S. L. ;
Desai, Sujai R. ;
Veeraraghavan, Srihari ;
Hansell, David M. ;
Copley, Susan J. ;
Maher, Toby M. ;
Corte, Tarnera J. ;
Sander, Clare R. ;
Ratoff, Jonathan ;
Devaraj, Anand ;
Bozovic, Gracijela ;
Denton, Christopher P. ;
Black, Carol M. ;
du Bois, Roland M. ;
Wells, Athol U. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2008, 177 (11) :1248-1254
[10]   Standardization of Spirometry 2019 Update An Official American Thoracic Society and European Respiratory Society Technical Statement [J].
Graham, Brian L. ;
Steenbruggen, Irene ;
Barjaktarevic, Igor Z. ;
Cooper, Brendan G. ;
Hall, Graham L. ;
Hallstrand, Teal S. ;
Kaminsky, David A. ;
McCarthy, Kevin ;
McCormack, Meredith C. ;
Miller, Martin R. ;
Oropez, Cristine E. ;
Rosenfeld, Margaret ;
Stanojevic, Sanja ;
Swanney, Maureen P. ;
Thompson, Bruce R. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 200 (08) :E70-E88