Retrieving High Temporal Resolution Aerosol Layer Height From EPIC/DSCOVR Using Machine Learning Method

被引:0
作者
Tian, Xiaoqing [1 ]
Gao, Ling [2 ]
Li, Chengcai [1 ]
Li, Jun [2 ]
机构
[1] Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Beijing 100871, Peoples R China
[2] China Meteorol Adm, Natl Satellite Meteorol Ctr, Beijing 100081, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Aerosols; Reflectivity; Earth; Absorption; Satellites; Clouds; Remote sensing; Aerosol layer height (ALH); cloud-aerosol LIDAR with orthogonal polarization (CALIOP); Earth polychromatic imaging camera (EPIC); machine learning (ML); OPTICAL DEPTH; SMOKE AEROSOLS; SATELLITE; BAND; OXYGEN; ATMOSPHERE; ALGORITHM; RADIATION; SURFACES; CALIOP;
D O I
10.1109/TGRS.2024.3405186
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Aerosol altitude is one of the key parameters for radiative forcing estimation and environment studies. In order to obtain wide coverage and multiple times aerosol layer height (ALH) per day, we developed a machine learning (ML)-based algorithm for retrieving ALH from the Earth polychromatic imaging camera (EPIC) observations. The reflectance of all bands from EPIC, solar and view angles are used as predictors. High-accuracy ALH from cloud-aerosol LIDAR with orthogonal polarization (CALIOP) is used as response. The algorithm was applied to observations over western sea of Africa (Area 1) and north plain of China (Area 2). The data from January to November 2021 are used for the XGBoost model construction, and independent 10-fold cross-validation (CV) results show very good performance of retrieval algorithm with correlation coefficient (R) larger than 0.9, root mean square error (RMSE) less than 0.55 km and the proportion falling within the expected error (EE) is over 80%. The independent EPIC ALH retrievals of whole 2016 year also show consistency with CALIOP observations. The RMSE is 0.78 (0.9) km and the proportion falling within EE is 58% (45%) for Areas 1 and 2, respectively. The comparisons between XGB retrievals and the operational aerosol optical centroid height (AOCH) product from EPIC for dust and haze cases show that the XGB retrievals are much more consistent with CALIOP observations than the operational EPIC AOCH. ALH retrievals from this study could capture the spatial and temporal variations both for the high aerosol layer (dust) and the low aerosol layer (haze).
引用
收藏
页码:1 / 11
页数:11
相关论文
共 38 条
[21]  
Park S. S., 2023, Atmos. Meas. Tech. Discuss. preprint, DOI [10.5194/amt-2023-136, DOI 10.5194/AMT-2023-136]
[22]   Effects of absorbing aerosols in cloudy skies: a satellite study over the Atlantic Ocean [J].
Peters, K. ;
Quaas, J. ;
Bellouin, N. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (04) :1393-1404
[23]   Satellite-based estimate of the direct and indirect aerosol climate forcing [J].
Quaas, Johannes ;
Boucher, Olivier ;
Bellouin, Nicolas ;
Kinne, Stefan .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D5)
[24]   Aerosol Parameters Retrieval From TROPOMI/S5P Using Physics-Based Neural Networks [J].
Rao, Lanlan ;
Xu, Jian ;
Efremenko, Dmitry S. ;
Loyola, Diego G. ;
Doicu, Adrian .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :6473-6484
[25]   Black carbon vertical profiles strongly affect its radiative forcing uncertainty [J].
Samset, B. H. ;
Myhre, G. ;
Schulz, M. ;
Balkanski, Y. ;
Bauer, S. ;
Berntsen, T. K. ;
Bian, H. ;
Bellouin, N. ;
Diehl, T. ;
Easter, R. C. ;
Ghan, S. J. ;
Iversen, T. ;
Kinne, S. ;
Kirkevag, A. ;
Lamarque, J. -F. ;
Lin, G. ;
Liu, X. ;
Penner, J. E. ;
Seland, O. ;
Skeie, R. B. ;
Stier, P. ;
Takemura, T. ;
Tsigaridis, K. ;
Zhang, K. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (05) :2423-2434
[26]   Evaluation of the operational Aerosol Layer Height retrieval algorithm for Sentinel-5 Precursor: application to O2 A band observations from GOME-2A [J].
Sanders, A. F. J. ;
de Haan, J. F. ;
Sneep, M. ;
Apituley, A. ;
Stammes, P. ;
Vieitez, M. O. ;
Tilstra, L. G. ;
Tuinder, O. N. E. ;
Koning, C. E. ;
Veefkind, J. P. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (11) :4947-4977
[27]   Retrieval of the optical depth and vertical distribution of particulate scatterers in the atmosphere using O2 A- and B-band SCIAMACHY observations over Kanpur: a case study [J].
Sanghavi, S. ;
Martonchik, J. V. ;
Landgraf, J. ;
Platt, U. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (05) :1099-1119
[28]   On the generation of atmospheric property Jacobians from the (V)LIDORT linearized radiative transfer models [J].
Spurr, Robert ;
Christi, Matt .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2014, 142 :109-115
[29]  
Stocker TF, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P1, DOI 10.1017/cbo9781107415324
[30]   Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations [J].
Torres, O. ;
Ahn, C. ;
Chen, Z. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (11) :3257-3270