Deep learning-assisted detection and segmentation of intracranial hemorrhage in noncontrast computed tomography scans of acute stroke patients: a systematic review and meta-analysis

被引:9
作者
Hu, Ping [1 ,2 ,3 ,4 ]
Yan, Tengfeng [1 ,2 ,3 ,4 ]
Xiao, Bing [1 ]
Shu, Hongxin [1 ,2 ,3 ,4 ]
Sheng, Yilei [1 ,2 ,3 ,4 ]
Wu, Yanze [1 ,2 ,3 ,4 ]
Shu, Lei [1 ,2 ,3 ,4 ]
Lv, Shigang [1 ]
Ye, Minhua [1 ]
Gong, Yanyan [1 ,5 ]
Wu, Miaojing [1 ,5 ]
Zhu, Xingen [1 ,2 ,3 ,4 ,5 ]
机构
[1] Nanchang Univ, Affiliated Hosp 2, Jiangxi Med Coll, Dept Neurosurg, Nanchang, Jiangxi, Peoples R China
[2] Nanchang Univ, Jiangxi Key Lab Neurol Tumors & Cerebrovascular Di, Nanchang, Jiangxi, Peoples R China
[3] Nanchang Univ, Jiangxi Hlth Commiss Key Lab Neurol Med, Nanchang, Jiangxi, Peoples R China
[4] Nanchang Univ, Inst Neurosci, Nanchang, Jiangxi, Peoples R China
[5] Nanchang Univ, Dept Neurosurg, Affiliated Hosp 2, 1 Minde Rd, Nanchang City 330006, Jiangxi Provinc, Peoples R China
关键词
deep learning; hematoma segmentation; intracerebral hemorrhage; volume quantification; systemic review; NEAR-INFRARED SPECTROSCOPY; INTRACEREBRAL HEMORRHAGE; DIAGNOSTIC-ACCURACY; HEMATOMA VOLUME; ALGORITHM; IMAGES;
D O I
10.1097/JS9.0000000000001266
中图分类号
R61 [外科手术学];
学科分类号
摘要
Background:Deep learning (DL)-assisted detection and segmentation of intracranial hemorrhage stroke in noncontrast computed tomography (NCCT) scans are well-established, but evidence on this topic is lacking.Materials and methods:PubMed and Embase databases were searched from their inception to November 2023 to identify related studies. The primary outcomes included sensitivity, specificity, and the Dice Similarity Coefficient (DSC); while the secondary outcomes were positive predictive value (PPV), negative predictive value (NPV), precision, area under the receiver operating characteristic curve (AUROC), processing time, and volume of bleeding. Random-effect model and bivariate model were used to pooled independent effect size and diagnostic meta-analysis data, respectively.Results:A total of 36 original studies were included in this meta-analysis. Pooled results indicated that DL technologies have a comparable performance in intracranial hemorrhage detection and segmentation with high values of sensitivity (0.89, 95% CI: 0.88-0.90), specificity (0.91, 95% CI: 0.89-0.93), AUROC (0.94, 95% CI: 0.93-0.95), PPV (0.92, 95% CI: 0.91-0.93), NPV (0.94, 95% CI: 0.91-0.96), precision (0.83, 95% CI: 0.77-0.90), DSC (0.84, 95% CI: 0.82-0.87). There is no significant difference between manual labeling and DL technologies in hemorrhage quantification (MD 0.08, 95% CI: -5.45-5.60, P=0.98), but the latter takes less process time than manual labeling (WMD 2.26, 95% CI: 1.96-2.56, P=0.001).Conclusion:This systematic review has identified a range of DL algorithms that the performance was comparable to experienced clinicians in hemorrhage lesions identification, segmentation, and quantification but with greater efficiency and reduced cost. It is highly emphasized that multicenter randomized controlled clinical trials will be needed to validate the performance of these tools in the future, paving the way for fast and efficient decision-making during clinical procedure in patients with acute hemorrhagic stroke.
引用
收藏
页码:3839 / 3847
页数:9
相关论文
共 67 条
[1]   Hemorrhagic stroke lesion segmentation using a 3D U-Net with squeeze-and-excitation blocks [J].
Abramova, Valeriia ;
Clerigues, Albert ;
Quiles, Ana ;
Figueredo, Deysi Garcia ;
Silva, Yolanda ;
Pedraza, Salvador ;
Oliver, Arnau ;
Llado, Xavier .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 90
[2]   A joint convolutional-recurrent neural network with an attention mechanism for detecting intracranial hemorrhage on noncontrast head CT [J].
Alis, Deniz ;
Alis, Ceren ;
Yergin, Mert ;
Topel, Cagdas ;
Asmakutlu, Ozan ;
Bagcilar, Omer ;
Senli, Yeseren Deniz ;
Ustundag, Ahmet ;
Salt, Vefa ;
Dogan, Sebahat Nacar ;
Velioglu, Murat ;
Selcuk, Hakan Hatem ;
Kara, Batuhan ;
Ozer, Caner ;
Oksuz, Ilkay ;
Kizilkilic, Osman ;
Karaarslan, Ercan .
SCIENTIFIC REPORTS, 2022, 12 (01)
[3]   Intracerebral hemorrhage detection on computed tomography images using a residual neural network [J].
Altuve, Miguel ;
Perez, Ana .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2022, 99 :113-119
[4]   A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT [J].
Arab, Ali ;
Chinda, Betty ;
Medvedev, George ;
Siu, William ;
Guo, Hui ;
Gu, Tao ;
Moreno, Sylvain ;
Hamarneh, Ghassan ;
Ester, Martin ;
Song, Xiaowei .
SCIENTIFIC REPORTS, 2020, 10 (01)
[5]   Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration [J].
Arbabshirani, Mohammad R. ;
Fornwalt, Brandon K. ;
Mongelluzzo, Gino J. ;
Suever, Jonathan D. ;
Geise, Brandon D. ;
Patel, Aalpen A. ;
Moore, Gregory J. .
NPJ DIGITAL MEDICINE, 2018, 1
[6]   External Validation and Retraining of DeepBleed: The First Open-Source 3D Deep Learning Network for the Segmentation of Spontaneous Intracerebral and Intraventricular Hemorrhage [J].
Cao, Haoyin ;
Morotti, Andrea ;
Mazzacane, Federico ;
Desser, Dmitriy ;
Schlunk, Frieder ;
Guettler, Christopher ;
Kniep, Helge ;
Penzkofer, Tobias ;
Fiehler, Jens ;
Hanning, Uta ;
Dell'Orco, Andrea ;
Nawabi, Jawed .
JOURNAL OF CLINICAL MEDICINE, 2023, 12 (12)
[7]   Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT [J].
Chang, P. D. ;
Kuoy, E. ;
Grinband, J. ;
Weinberg, B. D. ;
Thompson, M. ;
Homo, R. ;
Chen, J. ;
Abcede, H. ;
Shafie, M. ;
Sugrue, L. ;
Filippi, C. G. ;
Su, M. -Y. ;
Yu, W. ;
Hess, C. ;
Chow, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (09) :1609-1616
[8]   Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study [J].
Chilamkurthy, Sasank ;
Ghosh, Rohit ;
Tanamala, Swetha ;
Biviji, Mustafa ;
Campeau, Norbert G. ;
Venugopal, Vasantha Kumar ;
Mahajan, Vidur ;
Rao, Pooja ;
Warier, Prashant .
LANCET, 2018, 392 (10162) :2388-2396
[9]   Automated detection and analysis of subdural hematomas using a machine learning algorithm [J].
Colasurdo, Marco ;
Leibushor, Nir ;
Robledo, Ariadna ;
Vasandani, Viren ;
Luna, Zean Aaron ;
Rao, Abhijit S. ;
Garcia, Roberto ;
Srinivasan, Visish M. ;
Sheth, Sunil A. ;
Avni, Naama ;
Madziva, Moleen ;
Berejick, Mor ;
Sirota, Goni ;
Efrati, Aielet ;
Meisel, Avraham ;
Shaltoni, Hashem ;
Kan, Peter .
JOURNAL OF NEUROSURGERY, 2023, 138 (04) :1077-1084
[10]   Intracerebral Hemorrhage Segmentation on Noncontrast Computed Tomography Using a Masked Loss Function U-Net Approach [J].
Coorens, Nadine A. ;
Lipman, Kevin Groot ;
Krishnam, Sanjith P. ;
Tan, Can Ozan ;
Alic, Lejla ;
Gupta, Rajiv .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2023, 47 (01) :93-101