Resolving the Amino Acid Sequence of Aβ1-42 at the Single-Residue Level Using Subnanopores in Ultrathin Films

被引:0
作者
Chen, Le [1 ]
Meng, Bin [1 ]
Xie, Yong [1 ]
Yao, Ziyang [1 ]
Chen, Haobin [1 ,2 ]
Dong, Zhuxin [1 ,2 ]
机构
[1] Cent South Univ, Sch Basic Med Sci, Dept Biomed Engn, Changsha 410013, Hunan, Peoples R China
[2] Furong Lab, Changsha 410000, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
beta amyloid; machine learning; mutation detection; nanopore sequencing; PTM detection; AMYLOID-BETA-PEPTIDE; ALZHEIMERS-DISEASE; PROTEIN; PROTEOMICS; MOLECULE; PHOSPHORYLATION; PROTEOFORMS; A-BETA-42; MUTATION; MOS2;
D O I
10.1002/adfm.202404799
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Proteoforms are proteins derived from highly related genes or post translational modifications (PTMs) of the same protein. They share extremely similar primary structures but have varying functions. Unfortunately, protein de novo sequencing including specific PTM/mutation detection is still challenging. Herein, a nanopore-based technique is reported to resolve the amino acid order of amyloid-beta (A beta(1-42)) with site specificity. Subnanopores are sputtered in 5 nm-thick inorganic membranes with a sensing depth of 0.66 nm inferred by finite element analysis. Denatured molecules at 0.45 ng mL(-1) translocate through subnanopores while the current traces are sampled at 500 kHz with rms noise <15 pA. Hundreds of blockades are clustered using machine learning, and multiple blockades are averaged to establish current consensus. Consensus traces strongly correlate with a linear model of amino acid volume of A beta(1-42) at single residue resolution, with Pearson Correlation Coefficients (PCCs) of 0.81 +/- 0.03 and 0.92 +/- 0.03 before and after dynamic time warping (DTW). A scrambled version of A beta(1-42) is tested for validation purposes. Deep learning classification reveals that different polypeptides generate distinct translocation fluctuating patterns, but variations become imperceptible for the same species measured across nanopores (Area Under the Curve, AUC 0.93 +/- 0.05 vs 0.64 +/- 0.12). Lastly, important PTMs and mutations are site-specifically located along the primary structure, implying new potential clinical applications.
引用
收藏
页数:12
相关论文
共 61 条
[1]   Mass-spectrometric exploration of proteome structure and function [J].
Aebersold, Ruedi ;
Mann, Matthias .
NATURE, 2016, 537 (7620) :347-355
[2]   Single-cell proteomics enabled by next-generation sequencing or mass spectrometry [J].
Bennett, Hayley M. M. ;
Stephenson, William ;
Rose, Christopher M. M. ;
Darmanis, Spyros .
NATURE METHODS, 2023, 20 (03) :363-374
[3]   Multiple rereads of single proteins at single-amino acid resolution using nanopores [J].
Brinkerhoff, Henry ;
Kang, Albert S. W. ;
Liu, Jingqian ;
Aksimentiev, Aleksei ;
Dekker, Cees .
SCIENCE, 2021, 374 (6574) :1509-+
[4]   Synergy between amyloid-β and tau in Alzheimer's disease [J].
Busche, Marc Aurel ;
Hyman, Bradley T. .
NATURE NEUROSCIENCE, 2020, 23 (10) :1183-1193
[5]   Electrical DNA Sequence Mapping Using Oligodeoxynucleotide Labels and Nanopores [J].
Chen, Kaikai ;
Gularek, Felix ;
Liu, Boyao ;
Weinhold, Elmar ;
Keyser, Ulrich F. .
ACS NANO, 2021, 15 (02) :2679-2685
[6]   Nanopores in solid-state membranes engineered for single molecule detection [J].
Dimitrov, V. ;
Mirsaidov, U. ;
Wang, D. ;
Sorsch, T. ;
Mansfield, W. ;
Miner, J. ;
Klemens, F. ;
Cirelli, R. ;
Yemenicioglu, S. ;
Timp, G. .
NANOTECHNOLOGY, 2010, 21 (06)
[7]   Discriminating Residue Substitutions in a Single Protein Molecule Using a Sub-nanopore [J].
Dong, Zhuxin ;
Kennedy, Eamonn ;
Hokmabadi, Mohammad ;
Timp, Gregory .
ACS NANO, 2017, 11 (06) :5440-5452
[8]   Teaching nanopores to speak protein [J].
Eisenstein, Michael .
NATURE METHODS, 2016, 13 (09) :715-715
[9]   The structure of pathogenic huntingtin exon 1 defines the bases of its aggregation propensity [J].
Elena-Real, Carlos A. ;
Sagar, Amin ;
Urbanek, Annika ;
Popovic, Matija ;
Morato, Anna ;
Estana, Alejandro ;
Fournet, Aurelie ;
Doucet, Christine ;
Lund, Xamuel L. ;
Shi, Zhen-Dan ;
Costa, Luca ;
Thureau, Aurelien ;
Allemand, Frederic ;
Swenson, Rolf E. ;
Milhiet, Pierre-Emmanuel ;
Crehuet, Ramon ;
Barducci, Alessandro ;
Cortes, Juan ;
Sinnaeve, Davy ;
Sibille, Nathalie ;
Bernado, Pau .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2023, 30 (3) :309-320
[10]   Identification of amino acids with sensitive nanoporous MoS2: towards machine learning-based prediction [J].
Farimani, Amir Barati ;
Heiranian, Mohammad ;
Aluru, Narayana R. .
NPJ 2D MATERIALS AND APPLICATIONS, 2018, 2 :1-9