Out-of-distribution Detection Learning with Unreliable Out-of-distribution Sources

被引:0
|
作者
Zheng, Haotian [1 ,2 ]
Wang, Qizhou [1 ]
Fang, Zhen [3 ]
Xia, Xiaobo [4 ]
Liu, Feng [5 ]
Liu, Tongliang [4 ]
Han, Bo [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Xian, Shaanxi, Peoples R China
[3] Univ Technol Sydney, Australian Artificial Intelligence Inst, Sydney, NSW, Australia
[4] Univ Sydney, Sydney AI Ctr, Sydney, NSW, Australia
[5] Univ Melbourne, Sch Comp & Informat Syst, Melbourne, Vic, Australia
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | 2023年
基金
澳大利亚研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot make valid predictions as in-distribution (ID) data, thereby increasing the reliability of open-world classification. However, it is typically hard to collect real out-of-distribution (OOD) data for training a predictor capable of discerning ID and OOD patterns. This obstacle gives rise to data generation-based learning methods, synthesizing OOD data via data generators for predictor training without requiring any real OOD data. Related methods typically pre-train a generator on ID data and adopt various selection procedures to find those data likely to be the OOD cases. However, generated data may still coincide with ID semantics, i.e., mistaken OOD generation remains, confusing the predictor between ID and OOD data. To this end, we suggest that generated data (with mistaken OOD generation) can be used to devise an auxiliary OOD detection task to facilitate real OOD detection. Specifically, we can ensure that learning from such an auxiliary task is beneficial if the ID and the OOD parts have disjoint supports, with the help of a well-designed training procedure for the predictor. Accordingly, we propose a powerful data generation-based learning method named Auxiliary Task-based OOD Learning (ATOL) that can relieve the mistaken OOD generation. We conduct extensive experiments under various OOD detection setups, demonstrating the effectiveness of our method against its advanced counterparts. The code is publicly available at: https://github.com/tmlr-group/ATOL.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    Journal of Machine Learning Research, 2024, 25
  • [2] Learning to Augment Distributions for Out-of-Distribution Detection
    Wang, Qizhou
    Fang, Zhen
    Zhang, Yonggang
    Liu, Feng
    Li, Yixuan
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] CONTINUAL LEARNING FOR OUT-OF-DISTRIBUTION PEDESTRIAN DETECTION
    Molahasani, Mahdiyar
    Etemad, Ali
    Greenspan, Michael
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2685 - 2689
  • [4] Out-of-distribution Detection with Boundary Aware Learning
    Pei, Sen
    Zhang, Xin
    Fan, Bin
    Meng, Gaofeng
    COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 : 235 - 251
  • [5] Entropic Out-of-Distribution Detection
    Macedo, David
    Ren, Tsang Ing
    Zanchettin, Cleber
    Oliveira, Adriano L., I
    Ludermir, Teresa
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [6] Watermarking for Out-of-distribution Detection
    Wang, Qizhou
    Liu, Feng
    Zhang, Yonggang
    Zhang, Jing
    Gong, Chen
    Liu, Tongliang
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] Is Out-of-Distribution Detection Learnable?
    Fang, Zhen
    Li, Yixuan
    Lu, Jie
    Dong, Jiahua
    Han, Bo
    Liu, Feng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [8] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [9] Out-Of-Distribution Detection In Unsupervised Continual Learning
    He, Jiangpeng
    Zhu, Fengqing
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3849 - 3854
  • [10] Out-of-Distribution Detection for Automotive Perception
    Nitsch, Julia
    Itkina, Masha
    Senanayake, Ransalu
    Nieto, Juan
    Schmidt, Max
    Siegwart, Roland
    Kochenderfer, Mykel J.
    Cadena, Cesar
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2938 - 2943